On the Communication Complexity

of Approximate Pattern Matching

Jakob Nogler?

based on joint work with

Tomasz Kociumaka' Philip Wellnitz®

IMax Planck Institute for Informatics, SIC (— INSAIT)
2ETH Zurich

3National Institute of Informatics, SOKENDAI

1/31

® A string is a sequence of characters from an alphabet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S abaabaabaabaabaab

2/31

® A string is a sequence of characters from an alphabet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S abaabaabaabaabaab

S[12]

2/31

® A string is a sequence of characters from an alphabet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S abaabaabaabaabaab

S[3.10) S[12]

2/31

® A string is a sequence of characters from an alphabet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S abaabaabaabaabaab

S[3.10) S[12]

® An integer p is a period of a string S if S[i] = S[i + p] for all i € {0,...,|S|—p—1}.

2/31

® A string is a sequence of characters from an alphabet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S abaabaabaabaabaab

S[3.10) S[12]

® An integer p is a period of a string S if S[i] = S[i + p] for all i € {0,...,|S|—p—1}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

abaabaabaabaabaab
A N N U U

p=3

2/31

Hamming and Edit Distance

® The Hamming distance HD(X, Y') measures the number of mismatching characters
between strings X, Y.

3/31

Hamming and Edit Distance

® The Hamming distance HD(X, Y') measures the number of mismatching characters
between strings X, Y.

X
HD(X, Y) =2

v ——T
o——o
L —p
o—p
v —p
o——0o
o——0o
o——o
L —p
o——0o
o—0
L —p
p—p

Y

3/31

Hamming and Edit Distance

® The Hamming distance HD(X, Y') measures the number of mismatching characters
between strings X, Y.

X
HD(X, Y) =2

v ——T
o——o
L —p
o—p
v —p
o——0o
o——0o
o——o
L —p
o——0o
o——o
L —p
p—p

Y

® The edit distance ED(X, Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y.

3/31

Hamming and Edit Distance

® The Hamming distance HD(X, Y') measures the number of mismatching characters
between strings X, Y.

X
HD(X, Y) =

v ——T
o——o
L —p
o—p
v —p
o——0o
o——0o
o——o
L —p
o——0o
o——o
L —p
p—p

Y

® The edit distance ED(X, Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y.

Ababababbba

::////////// ED(X, Y) = 3

babbbabbaa

3/31

Hamming and Edit Distance

® The Hamming distance HD(X, Y') measures the number of mismatching characters
between strings X, Y.

X
HD(X, Y) =2

v ——T
o——o
L —p
o—p
v —p
o——0o
o——0o
o——o
L —p
o——0o
o——o
L —p
p—p

Y

® The edit distance ED(X, Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y.

ababababbba

::W//////// ED(X, Y) = 3

babbbabbaa

Alignment

3/31

Pattern Matching (PM)

Text T, |T|=n abaababababbbabbaaabbbabbaa

Pattern P, [Pl=m abababbbabbaa

4/31

Pattern Matching (PM)

Text T, |T|=n abaab abbbabbaa

Pattern P, |[P| =m

¢ Exact PM: Compute Occ(P, T) :={x | T[x..x+ m) = P}.

4/31

Pattern Matching (PM)

Text T, |T|=n abaababababbbabbaaabbbabbaa

k=2

Pattern P, |[P| =m

e Exact PM: Compute Occ(P, T) :={x| T[x..x+ m) = P}.

* PM with mismatches: Compute Occl(P, T) := {x | HD(T[x..x 4+ m),P) < k}.

4/31

Pattern Matching (PM)

Text T, |T|=n Ababababbbabbaaabbbabbaa

NN

Pattern P, |[P| =m babbbabbaa

x~ O

=3

e Exact PM: Compute Occ(P, T) :={x| T[x..x+ m) = P}.
® PM with mismatches: Compute Occ/(P, T) := {x | HD(T[x..x + m), P) < k}.

* PM with edits: Compute OccE(P, T) := {x |3y ED(T[x..y),P) < k}.

4/31

Communication Complexity

Alice

¥ Bob

One-way protocol

5/31

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a
PM instance.
Text T, Pattern P,
Threshold k

5/31

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses
PM instance. the input.

Text T, Pattern P,
Threshold k

5/31

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses @ Alice sends

PM instance. the input. compressed data to
Text T, Pattern P, Bob.
Threshold k

5/31

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses @ Alice sends @ Bob needs to
PM instance. the input. compressed data to reconstructs the

Text T, Pattern P, Bob. output of the
Threshold k instance.

Set OccE(P, T)

5/31

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses @ Alice sends @ Bob needs to
PM instance. the input. compressed data to reconstructs the

Text T, Pattern P, Bob. output of the
Threshold k instance.

Set OccE(P, T)

Communication Complexity = “minimum # of machine words to send to Bob”

5/31

Example for Exact Pattern Matching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Text T abbabaabaabaabaabaabaabaabaabb

Pattern P abaabaabaabaabaab

Alice needs to send to Bob the set Occ(P, T) = {3,6,9,12}

6/31

Example for Exact Pattern Matching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Text T abbabaabaabaabaabaabaabaabaabb

Pattern P abaabaabaabaabaab

Alice needs to send to Bob the set Occ(P, T) = {3,6,9,12}

She has more than one way how to do it:

6/31

Example for Exact Pattern Matching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Text T abbabaabaabaabaabaabaabaabaabb

Pattern P abaabaabaabaabaab

Alice needs to send to Bob the set Occ(P, T) = {3,6,9,12}

She has more than one way how to do it:
1. She can send Occ(P, T) explicitly.

6/31

Example for Exact Pattern Matching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Text T abbabaabaabaabaabaabaabaabaabb

Pattern P abaabaabaabaabaab

Alice needs to send to Bob the set Occ(P, T) = {3,6,9,12}

She has more than one way how to do it:
1. She can send Occ(P, T) explicitly.

2. She can send Occ(P, T) in a compressed form.

6/31

Example for Exact Pattern Matching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Text T abbabaabaabaabaabaabaabaabaabb

Pattern P abaabaabaabaabaab

Alice needs to send to Bob the set Occ(P, T) = {3,6,9,12}

She has more than one way how to do it:
1. She can send Occ(P, T) explicitly.
2. She can send Occ(P, T) in a compressed form.
3. She can send P, T.

6/31

General Assumptions

1.n<3/2-m

7/31

General Assumptions

1.n<3/2-m

T | | '

P |
® Divide T into ©(n/m) blocks of length n < 3/2- m, and apply protocol on each block.

7/31

General Assumptions

1.n<3/2-m

T | - ‘

P |
® Divide T into ©(n/m) blocks of length n < 3/2- m, and apply protocol on each block.

2. An exact/k-mismatch/k-edit occurrence of P aligns with prefix and suffix of T

T ¢ |

7/31

General Assumptions

1.n<3/2-m

T | - ‘

P |
® Divide T into ©(n/m) blocks of length n < 3/2- m, and apply protocol on each block.

2. An exact/k-mismatch/k-edit occurrence of P aligns with prefix and suffix of T

T —— ——

7/31

General Assumptions

1.n<3/2-m

T | - ‘

P |
® Divide T into ©(n/m) blocks of length n < 3/2- m, and apply protocol on each block.

2. An exact/k-mismatch/k-edit occurrence of P aligns with prefix and suffix of T

T —4 : : L

7/31

Previous Results

Upper Bound | Lower Bound Refererence

Exact PM 0(1) Q(1) Periodicity Lemma, [FW65]

8/31

Previous Results

Upper Bound

Lower Bound

Refererence

Exact PM 0(1)

Q(1)

Periodicity Lemma, [FW65]

PM with mismatches O(k)

Q(k)

[CKP19]

N.B. In [CKP19] Alice sends to Bob Occt/ (P, T) plus the mismatch information MI(x) for

all x € Occl!(P, T), defined as

MI(x) = {(i, P[i], T[x + i]) | i € [0..m) such that P[i] £ T[x + i]}.

8/31

Previous Results

Upper Bound | Lower Bound Refererence
Exact PM 0(1) Q(1) Periodicity Lemma, [FW65]
PM with mismatches O(k) Q(k) [CKP19]
PM with edits O(k3) [CKW20]

8/31

Previous Results

Upper Bound | Lower Bound Refererence
Exact PM 0(1) Q(1) Periodicity Lemma, [FW65]
PM with mismatches O(k) Q(k) [CKP19]
PM with edits O(k3) [CKW20]
PM with edits O(klogn) Q(k) [KNW24]

8/31

Exact Pattern Matching

9/31

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T. J

Text T abaabaabaabaabaabaabaabaab

Pattern P abaabaabaabaabaab

10/31

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T. J

Text T abaabaabaabaabaabaabaabaab

Pattern P abaabaabaabaabaab

10/31

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T. J

P e e e e e e s
Text T abaabaabaabaabaabaabaabaab

Pattern P abaabaabaabaabaab

10/31

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T. J

P e e e e e e s
Text T abaabaabaabaabaabaabaabaab
Pattern P abaabaabaabaabaab

e N N U U

10/31

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T. J

P e e e e e e s
Text T abaabaabaabaabaabaabaabaab
Pattern P abaabaabaabaabaab

e N N U U

® gis a period of T and P, for g := gcd(Occ(P, T)).

10/31

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T. J

P e e e e e e s
Text T abaabaabaabaabaabaabaabaab
Pattern P abaabaabaabaabaab

e N N U U

® gis a period of T and P, for g := gcd(Occ(P, T)).
® AC Occ(P, T) for A:={0,g,2g,...,n— m}.

10/31

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T. J

P e e e e e e s
Text T abaabaabaabaabaabaabaabaab
Pattern P abaabaabaabaabaab

e N N U U

® gis a period of T and P, for g := gcd(Occ(P, T)).
® AC Occ(P, T) for A:={0,g,2g,...,n— m}.
® But for every x € Occ(P, T), we have x | g. Thus, x € Aand A= Occ(P, T).

10/31

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T. J

/_\/_WW\/W
Text T abaabaabaabaabaabaabaabaab
Pattern P abaabaabaabaabaab

e N N U U

g is a period of T and P, for g := gcd(Occ(P, T)).

A C Occ(P, T) for A:={0,g,2g,...,n— m}.

But for every x € Occ(P, T), we have x | g. Thus, x € Aand A= Occ(P, T).
In order to send A to Bob, it suffices that Alice sends two numbers: g and |A|.

10/31

Pattern Matching with Mismatches

11/31

What Alice Sends

Alice » Bob

® Alice selects a subset
{0,n—m} CSC Occfj(P, T)

s.t. ged(S) = ged(Occl (P, T)).

12/31

What Alice Sends

Alice » Bob

® Alice selects a subset
{0,n—m} CSCOcck(P,T)
s.t. ged(S) = ged(Occl (P, T)).

® Alice sends S and MI(x) for all x € S.

12/31

What Alice Sends

Alice ok 15 » Bob

® Alice selects a subset
{0,n—m} CSCOcck(P,T)
s.t. ged(S) = ged(Occl (P, T)).

® Alice sends S and MI(x) for all x € S.

12/31

What Alice Sends

Alice ok 15 » Bob

® Alice selects a subset
{0,n—m} CSCOcck(P,T)
s.t. ged(S) = ged(Occl (P, T)).

® Alice sends S and MI(x) for all x € S.

We can choose S s.t. |S| < O(log n).

12/31

What Alice Sends

Alice ok 15 » Bob

® Alice selects a subset
{0,n—m} CSCOcck(P,T)
s.t. ged(S) = ged(Occl (P, T)).

® Alice sends S and MI(x) for all x € S.

We can choose S s.t. |S| < O(log n).

® Construct S iteratively.

12/31

What Alice Sends

Alice ok 15 » Bob

® Alice selects a subset
{0,n—m} CSCOcck(P,T)
s.t. ged(S) = ged(Occl (P, T)).

® Alice sends S and MI(x) for all x € S.

We can choose S s.t. |S| < O(log n).

® Construct S iteratively.

® Try to add to S elements from Occt (P, T) one by one.

12/31

What Alice Sends

Alice ok 15 » Bob

® Alice selects a subset
{0,n—m} CSCOcck(P,T)
s.t. ged(S) = ged(Occl (P, T)).

® Alice sends S and MI(x) for all x € S.

We can choose S s.t. |S| < O(log n).

® Construct S iteratively.
® Try to add to S elements from Occt (P, T) one by one.
® For each element x either ged(S U {x}) = gcd(S) or gcd(S U {x}) < gcd(S)/2.

12/31

What Alice Sends

Ali > Bob
(Rice) — Eob)

® Alice selects a subset
{0,n—m} CSCOcck(P,T)
s.t. ged(S) = ged(Occl (P, T)).

® Alice sends S and MI(x) for all x € S.

We can choose S s.t. |S| < O(log n).

® Construct S iteratively.
® Try to add to S elements from Occt (P, T) one by one.
® For each element x either ged(S U {x}) = gcd(S) or gcd(S U {x}) < gcd(S)/2.

12/31

What Alice Sends (Example)

01 23 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T bebebebebebebebabcbabcbabababa

P bebebebebebebebcbabababa

k=4

13/31

—~
©
o
S
T
x
L
~
[%2)
)
c
(D)
9
()
=
<<
Fis)
T
=

]
el
PR
& Q@
& o
3 Q
QL @—d
8 Q—o0
8 O—ad
L Q—aQ
S 88—
s Q0—o0
S 0o—d
s o—o0
Y ®—O0
S Q—o0
2 0—0
S a——aQ
00— 0
S o—o0
o 0— O
© OQ——.Q
~ 00— O
© O0——0
o O— O
+ Q——0
o 0— 0
o Q——Q0
- 0O— 0
o O0——0
~ Q

13/31

—~
©
o
S
T
x
L
~
[%2)
)
c
(D)
9
()
=
<<
Fis)
T
=

=
N
©
I
~
o~
©
1%
o]
I
<
N
I
I\
N
~
—
o
o
1%
=)
—
0
—
~
—
©
—
)
—
<
—
™
—
o
—
—
—
o
—
o
©
~
©
1)
<
™
o
—
o

=4

k

Occl(P, T) = {0,2}

13/31

—~
©
o
S
T
x
L
~
[%2)
)
c
(D)
9
()
=
<<
Fis)
T
=

01 23 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

b
b

O—O

b
b

13/31

—~
©
o
S
T
x
L
~
[%2)
)
c
(D)
9
()
=
<<
Fis)
T
=

2 O—
8 0—0
N 0— o
§ a—.0
[—
s a—.0
o —.
8 0—.0
8 O—— O
S a—.0
Yy —)
© 0—0
SRS p—)
S a—.0
[—)
5 a—.0
2 0—O
8 a—0
00— o
s a—,0
o O—— O
© Q—0
~ O——O0
e Q—0
v O
« 0
» O
~ Q
)
o Q

~ Q

={0,2,4,6}

OcckH(P, T)

13/31

What Alice Sends (Example)

01 23 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T bebebebebebebebabcbabcbabababa

k=4

Occl(P, T) = {0,2,4,6}

Alice sends S = {0,2,6}

13/31

—~
©
(oF
S
T
x
L
~
[%2)
)
c
(D)
9
()
=
<<
Fis)
T
=

{0,2,6}

Alice sends S

and
{(15,¢,a),(17,a,c),(21,a,c)}

13/31

—~
©
(oF
S
T
x
L
~
[%2)
)
c
(D)
9
()
=
<<
Fis)
T
=

=
N
©
I
~
o~
©
1%
o]
I
<
N
I
I\
N
~
—
o
o
1%
=)
—
0
—
~
—
©
—
)
—
<
—
™
—
o
—
—
—
o
—
o
©
~
©
1)
<
™
o
—
o

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

={0,2,4,6}

OcckH(P, T)

{0,2,6}

Alice sends S

and
{(15,¢,a),(17,a,c),(21,a,c)}

{(13,e,a),(19,a,¢)}

13/31

What Alice Sends (Example)

T

P

01 2 3 45

bebebe

Occl(P, T) = {0,2,4,6}

Alice sends S = {0,2,6}
and
{(15,¢,a),(17,a,c),(21,a,c)}
{(13,e,a),(19,a,¢)}
{(9,e,a),(11,e,c),(13,e,a)}

13/31

What Bob Receives (Example)

Bob receives S = {0,2,6}
and
{(15,¢,a),(17,a,¢),(21,a,¢c)}}
{(13,e,2),(19,a,c)}
{(9,e,2),(11,e,c),(13,e,a)}

p

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
T PRPRPP?PPRP??PPRP? PP P?PPRP?P?PP????P?

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

14/31

What Bob Receives (Example)

Bob receives S = {0,2,6}

and
{(15,¢,a),(17,a,¢),(21,a,¢c)}}
{(13,e,2),(19,a,c)}

—~ o

{(9,e,2),(11,e,c),(13,e,a)}

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T 7777777 T??TP??7?7%7a%?7c?7a?c??7??°7?7?7
P TP ?c?a???7av?

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

14/31

What Bob Receives (Example)

Bob receives S = {0,2,6}
and
{(15,¢,a),(17,a,¢),(21,a,¢c)}}
{(13,e,2),(19,a,c)}
{(9,e,2),(11,e,c),(13,e,a)}

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

- OSIINEEERREY,

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

14/31

What Bob Receives (Example)

Bob receives S = {0,2,6}
and
{(15,¢,a),(17,a,¢),(21,a,¢c)}}
{(13,e,2),(19,a,c)}
{(9,e,2),(11,e,c),(13,e,a)}

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

A .

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

14/31

What Bob Receives (Example)

Bob receives S = {0,2,6}
and
{(15, ¢, a),(17,a,c),
{(13,e,2),(19,
{(9,e,a),(11,e,c),

—~~

21,a,¢)}}
,c)}
3,e,a)}

—~ W

Inference graph Gg

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T (O O O O O S O S S S S S G S G- N Gl B Sl G S B S S A S A A 4
P T?T?T??????7e7e?7e?c?7a?a?a??

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

14/31

What Bob Receives (Example)

Bob receives S = {0,2,6}
and
{(15,¢,a),(17,a,¢),(21,a,¢c)}}
{(13,e,2),(19,a,c)}
{(9,e,2),(11,e,c),(13,e,a)}

p

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
? 1 / 1 1 / 1 a ¢ 7?7 ¢ 7?7 1 e 1
? 7?7 ? 7?7 e e e ¢ a a a 7
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Red connected component (at least one red edge)

14/31

What Bob Receives (Example)

Bob receives S = {0,2,6}
and
{(15,¢,a),(17,a,¢),(21,a,¢c)}}
{(13,e,2),(19,a,c)}
{(9,e,2),(11,e,c),(13,e,a)}

p

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
e e e e e e e a C a C a a a a
ANINESESENENENE XXX\

e e e e e e e C a a a a
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Red connected component (at least one red edge)

14/31

What Bob Receives (Example)

Bob receives S = {0,2,6}
and
{(15,¢,a),(17,a,¢),(21,a,¢c)}}
{(13,e,2),(19,a,c)}
{(9,e,2),(11,e,c),(13,e,a)}

p

01 23 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
T T 7T 7T 7 7 ? 7 T ! ! [7 7 7
? ? ? ? ? ? ? ? ? ? ? ?
01 23 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23

Black connected component (no red edge)

14/31

What Bob Receives

Alice ¥ Bob
(tice) S and MI(x) for all x € § {Bob)

® Alice selects a subset

{0,n—m} C S COccH(P, T) ® Bob receives S and MI(x) for all x € S.

® Bob constructs the graph Gs = (V, E):

s.t.
ged(S) = ged(Occll (P, T)). * V={to,...,tn-1,P0;- -, Pm-1}, and
® {tisj,pi} € EforallieS,je[0..m), edge is red
[) Alice Sends 5 and 1\[1()() for a” ifis a mismatch, otw it is black.
x€S.

15/31

The Structure of Connected Components in Gg

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T.

Let g := gcd(S). Then, Gs has g connected components. Moreover, the i-th connected
component for i € [0..g) contains

{Pj|j5g "}U{tjUEg i}

16 /31

The Structure of Connected Components in Gg

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T.

Let g := gcd(S). Then, Gs has g connected components. Moreover, the i-th connected
component for i € [0..g) contains

{Pj|j5g "}U{tjUEg i}

v,

e Construct strings P®, T% from P, T by replacing each character with a sentinel character

unique to the connected component in Gg the character is contained.

16/31

The Structure of Connected Components in Gg

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T.

Let g := gcd(S). Then, Gs has g connected components. Moreover, the i-th connected
component for i € [0..g) contains

{Pj|j5g "}U{tjUEg i}

v,

e Construct strings P®, T% from P, T by replacing each character with a sentinel character
unique to the connected component in Gg the character is contained.
e For each x € S, we have x € Occ(P%, T%). Thus, S C Occ(P?, T3).

16/31

The Structure of Connected Components in Gg

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T.

Let g := gcd(S). Then, Gs has g connected components. Moreover, the i-th connected
component for i € [0..g) contains

{Pj|j5g "}U{UUEg i}

e Construct strings P®, T% from P, T by replacing each character with a sentinel character
unique to the connected component in Gg the character is contained.

e For each x € S, we have x € Occ(P%, T%). Thus, S C Occ(P?, T3).

® As {0,n — m} C Occ(P%, T%), we can apply the Apply Periodicity Lemma.

16/31

The Structure of Connected Components in Gg

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T.

Let g := gcd(S). Then, Gs has g connected components. Moreover, the i-th connected
component for i € [0..g) contains

{Pj|j5g "}U{UUEg i}

v,

e Construct strings P®, T% from P, T by replacing each character with a sentinel character

unique to the connected component in Gg the character is contained.

For each x € S, we have x € Occ(P?, T%). Thus, S C Occ(P?, T9).

As {0,n — m} C Occ(P$, T%), we can apply the Apply Periodicity Lemma.
The period of P® and T* is at most gcd(Occ(P?, T%)) < g

16/31

The Structure of Connected Components in Gg

[FW65]
If n<3/2-mand {0,n— m} C Occ(P, T), then gcd(Occ(P, T)) is a period of T.

Let g := gcd(S). Then, Gs has g connected components. Moreover, the i-th connected
component for i € [0..g) contains

{Pj|j5g "}U{UUEg i}

v,

unique to the connected component in Gg the character is contained.

For each x € S, we have x € Occ(P?, T%). Thus, S C Occ(P?, T9).

As {0,n — m} C Occ(P$, T%), we can apply the Apply Periodicity Lemma.
The period of P® and T* is at most gcd(Occ(P?, T%)) < g

Gs has at most g connected components.

Construct strings P%, T® from P, T by replacing each character with a sentinel character

16/31

Bob constructs P# and T#

Alice

® Alice selects a subset
{0,n—m} CSCOcck(P,T)
s.t. ged(S) = ged(Occy (P, T)).

e Alice sends S and MI(x) for all
xeS.

S and MI(x) for all x € S

¥ Bob

Bob receives S and MI(x) for all x € S.

Bob constructs the graph Gs = (V, E):

* V={ty,...,th—1,P0,--,Pm—1}, and
e {ti1;,pi} € Eforallie§S,je[0..m), edge is red
if is a mismatch, otw it is black.

Bob construct strings P#, T# from P, T by replacing
each character contained in a black component in Gg
with a sentinel character (unique to the component
the character is contained).

Bob computes Occl/(P#, T#).
17/31

Examples for P and T

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T# teftettetettettetettattctatctattatta#a

p# e tettetettettetettcattatatta
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

18/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

19/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

° Occfj(P, T)C OcckH(P#, T#):

19/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

® Occl(P, T) C Occl (P#, T#) :
o P#[i] = T#[j] implies P[i] = T[j].

19/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

® Occl(P, T) C Occl (P#, T#) :
o P#[i] = T#|[j] implies P[i] = T[j].
® Thus, HD(P#, T#]i..i + m)) > HD(P, T[i..i + m)) for all i.

19/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

® Occl(P, T) C Occl (P#, T#) :
o P#[i] = T#|[j] implies P[i] = T[j].
® Thus, HD(P#, T#]i..i + m)) > HD(P, T[i..i + m)) for all i.

e Occl(P#, T#) C Occl(P, T) :

19/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

® Occl(P, T) C Occl (P#, T#) :
o P#[i] = T#|[j] implies P[i] = T[j].
® Thus, HD(P#, T#]i..i + m)) > HD(P, T[i..i + m)) for all i.

e Occl(P#, T#) C Occl(P, T) :
® Fix i€ Occl(P,T) and j € [0..m)

19/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

® Occl(P, T) C Occl (P#, T#) :
o P#[i] = T#|[j] implies P[i] = T[j].
® Thus, HD(P#, T#]i..i + m)) > HD(P, T[i..i + m)) for all i.

® Occ)l(P#, T#) C Occil(P, T):
® Fix i€ Occl(P,T) and j € [0..m)
* Asi| g for g = gcd(S) = ged(Occl/ (P, T)), we have j =4 i +j.

19/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

® Occl(P, T) C Occl (P#, T#) :
o P#[i] = T#|[j] implies P[i] = T[j].
® Thus, HD(P#, T#]i..i + m)) > HD(P, T[i..i + m)) for all i.

® Occ)l(P#, T#) C Occil(P, T):
® Fix i€ Occl(P,T) and j € [0..m)
* Asi| g for g = gcd(S) = ged(Occl/ (P, T)), we have j =4 i +j.

® Thus, p; and t;j;; are contained in the same connected component:
® If the component is black, then P#[j] = T#[j +i] and P[j] = T[j +i].
® If the component is red, then P*[j] = P[j] and P*[i 4 j] = P[i + j].

19/31

P and T7 preserve k-mismatch occurrences

Occl (P#, T#) = Occl/ (P, T).

® Occl(P, T) C Occl (P#, T#) :
e P#[i] = T#[j] implies P[i] = T[j].
o Thus, HD(P#, T#[i..i + m)) > HD(P, T[i..i + m)) for all i.

® Occ)l(P#, T#) C Occil(P, T):
Fix i € Occl(P, T) and j € [0..m)
As i | g for g = ged(S) = ged(Occ (P, T)), we have j =; i + J.

® Thus, p; and t;j;; are contained in the same connected component:
® If the component is black, then P#[j] = T#[j +i] and P[j] = T[j +i].
® If the component is red, then P*[j] = P[j] and P*[i 4 j] = P[i + j].

As j was arbitrary, HD(P#, T#[i..i + m)) = HD(P, T[i..i + m)) and i € Occl(P#, T#).

19/31

Pattern Matching with Edits

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k,

T H T

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

P e b
|
T eebeeea

a a
| |
beeeebeoe
|

P e e ae e e e 2

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

® Bob reconstructs the alignments in S.

P ebaeeeeeoe
Toobooo‘ﬁal‘)o‘iio‘l‘tlo‘
- TR

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

® Bob reconstructs the alignments in S.

® Bob makes a graph out of it.
T eebeeeabeeeeboece

N

P ebaeeee aeoe

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

® Bob reconstructs the alignments in S.
® Bob makes a graph out of it.

® Bob selects red connected components,

T e Db abe be
P bae ae

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

® Bob reconstructs the alignments in S.
® Bob makes a graph out of it.

® Bob selects red connected components, and

T W propagates characters in them.
P bab ab

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

Bob reconstructs the alignments in S.

Bob makes a graph out of it.

Bob selects red connected components, and
T e e oo e oo 4 propagates characters in them.

|

Bob selects black connected components,

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

TO

120

120

120

Bob reconstructs the alignments in S.
Bob makes a graph out of it.

Bob selects red connected components, and
propagates characters in them.

Bob selects black connected components, and
numbers them.

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

TO

120

120

120

Bob reconstructs the alignments in S.
Bob makes a graph out of it.

Bob selects red connected components, and
propagates characters in them.

Bob selects black connected components, and
numbers them.

21/31

Finding a Period Structure

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the
information about edits.

® Bob reconstructs the alignments in S.
® Bob makes a graph out of it.

® Bob selects red connected components, and
Tis 01201201 propagates characters in them.
D U

p ® Bob selects black connected components, and
IS 0\12/0_1 numbers them.

21/31

Mapping Back the Periodic Structure to the Original Strings

T\s 012345678012345678012345678012345678012345

P\S 012345678012345678012345

22/31

Mapping Back the Periodic Structure to the Original Strings

ﬂs 012345678012345678012345678012345678012345

T b012345678a0123b4567801232a45678a012345678012a345

HS 012345678012345678012345

P 220123456780123bb456780123a45

22/31

Mapping Back the Periodic Structure to the Original Strings

Tis 012345678012345678012345678012345678012345

T b0/12345678a0123b456786123aa456783\012345678\012a345

T0 1 T2 T3 T4
Ps 012345678012345678012345
P 2a20123456780123bb456780123245
o T T

22/31

Alignments Covered by S

T 1 '} LI Ll '} Ll '} '} [| '} 1
I | | LILILILI | | LILJ | | | | LI | | 1
T0 T1 T2 T3 T4 75
P —_——— ———
To T Uy

23/31

Alignments Covered by S

e Consider an arbitrary alignment X' : P ~» T[t..t") of cost at most k.

t t/
T 1 '} LI Ll '} Ll '} '} [| '} 1
I ; | | LILILILI | | LILJ I; | | LI | | 1
T0 I T1 T2 T3 T4 Ts
| |
| |
| |
P e —— ——
70 1 T2

23/31

Alignments Covered by S

e Consider an arbitrary alignment X' : P ~» T[t..t") of cost at most k.
e Compute A = min; |1; — t — mg|.

A /
t l_l t
T - — H—t I - — |
T0 o T1 T2 T3 T4 Ts
P C—_— —— ——

23/31

Alignments Covered by S

e Consider an arbitrary alignment X' : P ~» T[t..t") of cost at most k.

e Compute A = min; |1; — t — mg|.

A /
t t
T l_::) HH— H i i ——1 i

Case A = Q(k) (large)

23/31

Alignments Covered by S

e Consider an arbitrary alignment X' : P ~» T[t..t") of cost at most k.

e Compute A = min; |1; — t — mg|.

Ac /
t I_| t
T I i c HH i H i i H i |

Case A = Q(k) (large) => if X is added to S, the # of black components at least halves.

23/31

Alignments Covered by S

e Consider an arbitrary alignment X' : P ~» T[t..t") of cost at most k.
e Compute A = min; |1; — t — mg|.

A
T | ;IH; HH— H i — ——1 i
P | | |

Case A = O(k) (small)

23/31

Alignments Covered by S

e Consider an arbitrary alignment X' : P ~» T[t..t") of cost at most k.
e Compute A = min; |1; — t — mg|.

T 5 HH— H

P T —— ———

Case A = O(k) (small)

23/31

Alignments Covered by S

e Consider an arbitrary alignment X' : P ~» T[t..t") of cost at most k.
e Compute A = min; |1; — t — mg|.

T H—=———HH———H—————

P H—H H—!1— H —I—

Case A = O(k) (small)

23/31

Alignments Covered by S

e Consider an arbitrary alignment X' : P ~» T[t..t") of cost at most k.
e Compute A = min; |1; — t — mg|.

T

P

encoding cost = O(k)

Case A = O(k) (small) => there exists alignment with the same cost of X that matches
characters in the same uncovered black components.

23/31

Algorithmic Applications:
Compressed Construction of P* and T+

24 /31

Compressibility of P and T7

® | et’s take a step back.

25/31

Compressibility of P and T7

® | et’s take a step back.
® What we saw for mismatches:
1. Bob receives a set S C Occ(P, H) s.t. |S| = O(log n) and x € MI(x) for all x € S.

25/31

Compressibility of P and T7

® | et’s take a step back.
® What we saw for mismatches:
1. Bob receives a set S C Occ(P, H) s.t. |S| = O(log n) and x € MI(x) for all x € S.

2. Bob constructs graph Gs, propagates characters through red components, and replaces
sentinel characters in black component (unique to the connected component).

25/31

Compressibility of P and T7

® | et’s take a step back.
® \What we saw for mismatches:

1.

2.

Bob receives a set S C Occ}/ (P, H) s.t. |S| = O(log n) and x € MI(x) for all x € S.

Bob constructs graph Ggs, propagates characters through red components, and replaces
sentinel characters in black component (unique to the connected component).

. Bob obtains string P# and T# equivalent to P and T w.r.t. PM with k mismatches.

25/31

Compressibility of P and T7

® | et’s take a step back.
® What we saw for mismatches:
1. Bob receives a set S C Occ(P, H) s.t. |S| = O(log n) and x € MI(x) for all x € S.

2. Bob constructs graph Gs, propagates characters through red components, and replaces
sentinel characters in black component (unique to the connected component).

3. Bob obtains string P# and T# equivalent to P and T w.r.t. PM with k mismatches.
e P# and T# have low space representation of O(k).

25/31

Compressibility of P and T7

Let's take a step back.
What we saw for mismatches:
1. Bob receives a set S C Occ(P, H) s.t. |S| = O(log n) and x € MI(x) for all x € S.

2. Bob constructs graph Gs, propagates characters through red components, and replaces
sentinel characters in black component (unique to the connected component).

3. Bob obtains string P# and T# equivalent to P and T w.r.t. PM with k mismatches.

P# and T# have low space representation of O(k).

e But naive construction is linear in time! Can we do better?

25/31

Compressibility of P and T7

Let's take a step back.

What we saw for mismatches:
1. Bob receives a set S C Occ(P, H) s.t. |S| = O(log n) and x € MI(x) for all x € S.

2. Bob constructs graph Gs, propagates characters through red components, and replaces
sentinel characters in black component (unique to the connected component).

3. Bob obtains string P# and T# equivalent to P and T w.r.t. PM with k mismatches.
P# and T# have low space representation of O(k).

e But naive construction is linear in time! Can we do better?

Can we have fast construction of low-space representation of P#, T#, e.g. using
grammars?

25/31

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

26/31

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...

26/31

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...
e [CKW20]: output (representation of) Occl!(P, T) using O(k?) PILLAR operations.

26 /31

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...
e [CKW20]: output (representation of) Occl!(P, T) using O(k?) PILLAR operations.
® This means: B

1. Bob can construct a grammar for P# and T# in O(k?) time, and

26 /31

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...
e [CKW20]: output (representation of) Occl!(P, T) using O(k?) PILLAR operations.
® This means: B

1. Bob can construct a grammar for P# and T# in O(k?) time, and

2. Bob can compute Occl(P#, T#) = Occl (P, T) in O(k?) time.

26 /31

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...
e [CKW20]: output (representation of) Occl!(P, T) using O(k?) PILLAR operations.
® This means: B

1. Bob can construct a grammar for P# and T# in O(k?) time, and

2. Bob can compute Occl(P#, T#) = Occl (P, T) in O(k?) time.
[KNW25]
Given N equality equations of the form X[i..j) = X[i’..j) on a length-n string X, we can
construct in time O(N2) a grammar-like representation of size O(N) of a strings Y which:
1. satisfies all N equations, and

2. Y[i] = Y[j] only when dictated by the equations.

Algorithmic Applications:
Quantum Algorithms

27/31

Turning the Previous ldeas into an Algorithm

® Instead of computing directly Occl(P, T) compute in through Occl!(P#, T#).

28/31

Turning the Previous ldeas into an Algorithm

® Instead of computing directly OcckH(P, T) compute in through Och’(P#, T#).

® Problem: constructing P#, T#
requires S s.t. {0,n —m} C S C Occl(P, T) and ged(S) = ged(Occl (P, T)).

28/31

Turning the Previous ldeas into an Algorithm

® Instead of computing directly OcckH(P, T) compute in through Och’(P#, T#).

® Problem: constructing P#, T#
requires S s.t. {0,n —m} C S C Occl(P, T) and ged(S) = ged(Occl (P, T)).
But Occ}/(P, T) is exactly what we want to compute!

28/31

Turning the Previous ldeas into an Algorithm

® Instead of computing directly Occl(P, T) compute in through Occl!(P#, T#).

® Problem: constructing P#, T#
requires S s.t. {0,n —m} C S C Occl(P, T) and ged(S) = ged(Occl (P, T)).
But Occ}/(P, T) is exactly what we want to compute!
® Workaround:

® Find Occl/ (P, T) C C C Occkl (P, T)
® Compute Ss.t. {0,n—m} C S C C and ged(S) = ged(C)

28/31

Constructing S through a Candidate Set

[[CKW20]: Find a candidate set Occt/(P, T) C C in one of two forms.]
|
— C forms an arithmetic progres-
€= O(k) [sion and C C Occkh (P, T)]

29/31

Constructing S through a Candidate Set

[[CKW20]: Find a candidate set Occt/(P, T) C C in one of two forms.]
|
— C forms an arithmetic progres-
@O(k) [sion and C C Occkh (P, T)]

{ For each x € C, distinguish between }

x € Occl(P, T) and x ¢ Occhl (P, T)

29/31

Constructing S through a Candidate Set

[[CKW20]: Find a candidate set Occt/(P, T) C C in one of two forms. J

|
— C forms an arithmetic progres-
@O(k) [sion and C C Occkh (P, T)]
For each x € C, distinguish between
x € Occl(P, T) and x ¢ Occhl (P, T)
|
1
The set C satisfies Occl/(P, T) € C C Occll (P, T).
Choose {0,n — m} C S C C s.t. gcd(S) = ged(C) and |S| = O(log n).

[

[Construct compressed P# and T# and compute Occf(P#, T#).]

29/31

Our Results

We apply our communication complexity results to the quantum setting:

® Input string S given as oracle where queries can be made in superposition

30/31

Our Results

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition

® Query complexity Q(n): counts number of queries to oracle

30/31

Our Results

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

30/31

Our Results

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

Query Complexity | Time Complexity | Refererence

PM with mismatches O(K3/4\/n) O(k+/7) [IN23]

30/31

Our Results

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

Query Complexity | Time Complexity | Refererence

PM with mismatches O(K3/4\/n) O(k+/7) [IN23]
PM with edits O(Vkn) O(Wkn + k3%) [KNW24]

30/31

Our Results

We apply our communication complexity results to the quantum setting:

® Input string S given as oracle where queries can be made in superposition

® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

Query Complexity | Time Complexity | Refererence
PM with mismatches O(Kk3/4\/n) O(ky/n) [IN23)
PM with edits O(V'kn) O(Wkn + k3%) [KNW24]
PM with mismatches O(Vkn) O(Wkn + K?) [KNW25]

30/31

Our Results

We apply our communication complexity results to the quantum setting:

® Input string S given as oracle where queries can be made in superposition

® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

Query Complexity | Time Complexity | Refererence
PM with mismatches O(Kk3/4\/n) O(ky/n) [IN23)
PM with edits O(V'kn) O(Wkn + k3%) [KNW24]
PM with mismatches O(Vkn) O(Wkn + K?) [KNW25]
PM with edits O(vVkn) O(Vkn + K39) [KNW25]

30/31

Our Results

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

Query Complexity | Time Complexity | Refererence
PM with mismatches O(k3/*\/n) O(k\/n) [IN23]
PM with edits O(Vkn) O(Vkn + k%) [KNW24]
PM with mismatches O(Vkn) O(Vkn + k) [KNW25]
PM with edits O(vVkn) O(Vkn + K39) [KNW25]

» The number of queries are optimal for k = o(n) (up to a logarithmic / subpolynomial factors).

30/31

Thanks!

