On the Communication Complexity of Approximate Pattern Matching

Jakob Nogler²

based on joint work with

Tomasz Kociumaka¹ Philip Wellnitz³

 1 Max Planck Institute for Informatics, SIC (\rightarrow INSAIT)

²ETH Zurich

³National Institute of Informatics, SOKENDAI

• A string is a sequence of characters from an alphabet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a b a a b a a b a a b a a b

• A string is a sequence of characters from an alphabet.

S a b a a b a a b a a b a a b a a b S S

• A string is a sequence of characters from an alphabet.

• A string is a sequence of characters from an alphabet.

• An integer p is a period of a string S if S[i] = S[i+p] for all $i \in \{0, \dots, |S|-p-1\}$.

• A string is a sequence of characters from an alphabet.

$$S$$
 a b a a b a a b a a b a a b a a b a a b $S[3...10)$ $S[12]$

• An integer p is a period of a string S if S[i] = S[i+p] for all $i \in \{0, \dots, |S|-p-1\}$.

• The *Hamming distance* HD(X, Y) measures the number of mismatching characters between strings X, Y.

• The Hamming distance HD(X, Y) measures the number of mismatching characters between strings X, Y.

• The Hamming distance HD(X, Y) measures the number of mismatching characters between strings X, Y.

• The *edit distance* ED(X, Y) measures the minimum number of insertions, deletions, and substitutions of characters to transform X into Y.

• The Hamming distance HD(X, Y) measures the number of mismatching characters between strings X, Y.

• The *edit distance* ED(X, Y) measures the minimum number of insertions, deletions, and substitutions of characters to transform X into Y.

• The Hamming distance HD(X, Y) measures the number of mismatching characters between strings X, Y.

• The *edit distance* ED(X, Y) measures the minimum number of insertions, deletions, and substitutions of characters to transform X into Y.

Text
$$T$$
, $|T|=n$ a b a a b a b a b a b b a a a b b b a a b b a a a b b a a a b b a a a b a b a a a b a b a a a b a b a a a b b a a a a b b b a a a a b b b a a a a b a b a b a a a a b b b a a a a b a b a b a a a a b a b b a a a a b a b b a a a a b a b b a a a a b a b b a a a a b a b b a a a a b a b b a a a a b a b b a a a a b a b b a a a a b b b a a a a b a b b a a b b a a a a b a b b a a a a b a b b a a a a b a b b a a a a b a b b a a b a b b a a b b a a a a b a b b a a b b a a b b a a b b a a a a b a b b a a b b a a b b a a a a b a b b b a a b b a a b b a a a b a b b a a b b a a b b b a a b b a a b b a a b b b a a b b a a b b b a a b b b a a b b a a b b b a a b b a a b b b a a b b b a a b b b a a b b a a b b b a a a a b b b b a a b b b a a b b b a a a a b b b a a a a b b b a a a a b b b a a a a b a b b b a a a a b a b b b a a a a a b b b b a a a a a b a b b b a a a a a b a b b a a a a a b a b b a a a a a b a b b a a a a a b a b a b

Text
$$T$$
, $|T|=n$ a b a a b a b a b a b b a a a b b b a a b b a a b a a b b a a a b b a a a b b a a a b b a a a b b a a a b b a a b a b a b b a a b b a a a b a b b a a b b a a b b a a a b a b b a a b b a a a b a b b a a a b a b b a a b b a a b b a a b b a a b a b b a a b b a a b b a a b b a a a b a b b a a b b b a b b a a b b a a b b a a b b a a b b a a b b a a b b a a b b b a b b a a b b a a b b b a a b b a a b b b a a b b a a b b b a b b a a b b b a b b a a b b b a a b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a a b b b a b b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b b a b b b a b b a b b a b b a b b a b b a b b a b b a b b a b b a b b b a b a b b a

• Exact PM: Compute $Occ(P, T) := \{x \mid T[x \cdot \cdot x + m) = P\}.$

- Exact PM: Compute $Occ(P, T) := \{x \mid T[x ... x + m) = P\}.$
- PM with mismatches: Compute $Occ_k^H(P,T) := \{x \mid HD(T[x ... x + m), P) \le k\}.$

Text
$$T$$
, $|T| = n$ aba \times babababbaabbaabbaabbaa

Pattern P , $|P| = m$ abababbaabbaabbaabbaa

 $k = 3$

- Exact PM: Compute $Occ(P, T) := \{x \mid T[x \cdot \cdot x + m) = P\}.$
- PM with mismatches: Compute $Occ_k^H(P,T) := \{x \mid HD(T[x ... x + m), P) \le k\}.$
- **PM** with edits: Compute $\operatorname{Occ}_k^E(P,T) := \{x \mid \exists y \ \operatorname{ED}(T[x ... y), P) \leq k\}.$

1) Alice receives a PM instance.

Text T, Pattern P, Threshold k

- 1 Alice receives a PM instance.
- Text T, Pattern P,
 Threshold k
- 2 Alice compresses the input.

- 1 Alice receives a PM instance.
- Text T, Pattern P, Threshold k
- 2 Alice compresses the input.
- 3 Alice sends compressed data to Bob.

- 1 Alice receives a PM instance.
- Text T, Pattern P, Threshold k
- 2 Alice compresses the input.
- 3 Alice sends compressed data to Bob.

4) Bob needs to reconstructs the output of the instance.

Set $Occ_k^E(P,T)$

- 1 Alice receives a PM instance.
- Text T, Pattern P,
 Threshold k
- 2 Alice compresses the input.
- (3) Alice sends compressed data to Bob.

4) Bob needs to reconstructs the output of the instance.

Set $Occ_k^E(P, T)$

Communication Complexity = "minimum # of machine words to send to Bob"

Text T

a b b a b a a b a a b a a b a a b a a b a a b a a b b

Pattern P

abaabaabaabaab

Alice needs to send to Bob the set $Occ(P, T) = \{3, 6, 9, 12\}$

Text T

a b b <u>a b a a b a a b a a b a a b a a b a a b</u> a a b a a b b a b b

Pattern *P*

abaabaabaabaab

Alice needs to send to Bob the set $Occ(P, T) = \{3, 6, 9, 12\}$

She has more than one way how to do it:

Text T

a b b a b a a b a a b a a b a a b a a b a a b b a a b b

Pattern *P*

abaabaabaabaab

Alice needs to send to Bob the set $Occ(P, T) = \{3, 6, 9, 12\}$

She has more than one way how to do it:

1. She can send Occ(P, T) explicitly.

Text T

a b b a b a a b a a b a a b a a b a a b a a b b a a b b

Pattern *P*

abaabaabaabaab

Alice needs to send to Bob the set $Occ(P, T) = \{3, 6, 9, 12\}$

She has more than one way how to do it:

- 1. She can send Occ(P, T) explicitly.
- 2. She can send Occ(P, T) in a compressed form.

Text T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 a b b a a b a a b a a b a a b a a b a a b a a b b

Pattern *P*

abaabaabaabaab

Alice needs to send to Bob the set $Occ(P, T) = \{3, 6, 9, 12\}$

She has more than one way how to do it:

- 1. She can send Occ(P, T) explicitly.
- 2. She can send Occ(P, T) in a compressed form.
- 3. She can send P, T.

1. $n \leq 3/2 \cdot m$

T

1.
$$n \le 3/2 \cdot m$$

• Divide T into $\Theta(n/m)$ blocks of length $n \leq 3/2 \cdot m$, and apply protocol on each block.

1. $n \leq 3/2 \cdot m$

- Divide T into $\Theta(n/m)$ blocks of length $n \leq 3/2 \cdot m$, and apply protocol on each block.
- 2. An exact/k-mismatch/k-edit occurrence of P aligns with prefix and suffix of T

1. $n \leq 3/2 \cdot m$

- Divide T into $\Theta(n/m)$ blocks of length $n \leq 3/2 \cdot m$, and apply protocol on each block.
- 2. An exact/k-mismatch/k-edit occurrence of P aligns with prefix and suffix of T

1. $n \leq 3/2 \cdot m$

- Divide T into $\Theta(n/m)$ blocks of length $n \leq 3/2 \cdot m$, and apply protocol on each block.
- 2. An exact/k-mismatch/k-edit occurrence of P aligns with prefix and suffix of T

	Upper Bound	Lower Bound	Refererence
Exact PM	$\mathcal{O}(1)$	$\Omega(1)$	Periodicity Lemma, [FW65]

	Upper Bound	Lower Bound	Refererence
Exact PM	$\mathcal{O}(1)$	$\Omega(1)$	Periodicity Lemma, [FW65]
PM with mismatches	$\mathcal{O}(k)$	$\Omega(k)$	[CKP19]

N.B. In [CKP19] Alice sends to Bob $\operatorname{Occ}_k^H(P,T)$ plus the mismatch information $\operatorname{MI}(x)$ for all $x \in \operatorname{Occ}_k^H(P,T)$, defined as

$$MI(x) := \{(i, P[i], T[x+i]) \mid i \in [0..m) \text{ such that } P[i] \neq T[x+i]\}.$$

	Upper Bound	Lower Bound	Refererence
Exact PM	$\mathcal{O}(1)$	$\Omega(1)$	Periodicity Lemma, [FW65]
PM with mismatches	$\mathcal{O}(k)$	$\Omega(k)$	[CKP19]
PM with edits	$\mathcal{O}(k^3)$		[CKW20]

	Upper Bound	Lower Bound	Refererence
Exact PM	$\mathcal{O}(1)$	$\Omega(1)$	Periodicity Lemma, [FW65]
PM with mismatches	$\mathcal{O}(k)$	$\Omega(k)$	[CKP19]
PM with edits	$\mathcal{O}(k^3)$		[CKW20]
PM with edits	$\mathcal{O}(k \log n)$	$\Omega(\pmb{k})$	[KNW24]

Exact Pattern Matching

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Text T abaabaabaabaabaabaabaab

Pattern P abaabaabaabaab

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Text T

a b a a b a a b a a b a a b a a b

Pattern P

abaabaabaabaab

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Text T

<u>a b a a b a a b a a b a a b</u> a a b a a b a a b

Pattern P

abaabaabaabaab

Periodicity Lemma Readapted [FW65]

If $n \le 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Text T

a b a a b a a b a a b a a b a a b

Pattern P

 \underline{a} \underline{b} \underline{a} \underline{a} \underline{b} \underline{a} \underline{a} \underline{b} \underline{a} \underline{a} \underline{b} \underline{a} \underline{a} \underline{b}

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Text T

a b a a b a a b a a b a a b a a b

Pattern P

 \underline{a} \underline{b} \underline{a} \underline{a} \underline{b} \underline{a} \underline{a} \underline{b} \underline{a} \underline{a} \underline{b} \underline{a} \underline{a} \underline{b}

• g is a period of T and P, for $g := \gcd(\operatorname{Occ}(P, T))$.

Periodicity Lemma Readapted [FW65]

If $n \le 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Text T

a b a a b

- g is a period of T and P, for $g := \gcd(\operatorname{Occ}(P, T))$.
- $A \subseteq Occ(P, T)$ for $A := \{0, g, 2g, \ldots, n m\}$.

Periodicity Lemma Readapted [FW65]

If $n \le 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Text T

a b a a b

- g is a period of T and P, for $g := \gcd(Occ(P, T))$.
- $A \subseteq Occ(P, T)$ for $A := \{0, g, 2g, \dots, n-m\}$.
- But for every $x \in \text{Occ}(P, T)$, we have $x \mid g$. Thus, $x \in A$ and A = Occ(P, T).

Periodicity Lemma Readapted [FW65]

If $n \le 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

- g is a period of T and P, for $g := \gcd(\operatorname{Occ}(P, T))$.
- $A \subseteq Occ(P, T)$ for $A := \{0, g, 2g, \dots, n-m\}$.
- But for every $x \in \text{Occ}(P, T)$, we have $x \mid g$. Thus, $x \in A$ and A = Occ(P, T).
- In order to send A to Bob, it suffices that Alice sends two numbers: g and |A|.

Pattern Matching with Mismatches

Alice selects a subset

$$\{0, n-m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$$

s.t.
$$gcd(S) = gcd(Occ_k^H(P, T)).$$

Alice selects a subset

$$\{0, n-m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$$

s.t.
$$gcd(S) = gcd(Occ_k^H(P, T)).$$

• Alice sends S and MI(x) for all $x \in S$.

Alice selects a subset

$$\{0, n-m\} \subseteq S \subseteq \mathrm{Occ}_k^H(P, T)$$

s.t.
$$gcd(S) = gcd(Occ_k^H(P, T)).$$

• Alice sends S and MI(x) for all $x \in S$.

Alice selects a subset

$$\{0, n-m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$$

s.t.
$$gcd(S) = gcd(Occ_k^H(P, T)).$$

• Alice sends S and MI(x) for all $x \in S$.

Alice selects a subset

$$\{0, n-m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$$

s.t.
$$gcd(S) = gcd(Occ_k^H(P, T)).$$

• Alice sends S and MI(x) for all $x \in S$.

We can choose S s.t. $|S| \leq \mathcal{O}(\log n)$.

• Construct *S* iteratively.

Alice selects a subset.

$$\{0, n-m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$$

s.t.
$$gcd(S) = gcd(Occ_k^H(P, T)).$$

• Alice sends S and MI(x) for all $x \in S$.

- Construct *S* iteratively.
- Try to add to S elements from $Occ_k^H(P, T)$ one by one.

$$\begin{array}{c}
\text{Alice} \\
\mathcal{O}(k \cdot |S|)
\end{array}$$

Alice selects a subset

$$\{0, n-m\} \subseteq S \subseteq \mathrm{Occ}_k^H(P, T)$$

s.t.
$$gcd(S) = gcd(Occ_k^H(P, T)).$$

• Alice sends S and MI(x) for all $x \in S$.

- Construct S iteratively.
- Try to add to S elements from $Occ_k^H(P, T)$ one by one.
- For each element x either $\gcd(S \cup \{x\}) = \gcd(S)$ or $\gcd(S \cup \{x\}) \leq \gcd(S)/2$.

Alice selects a subset

$$\{0, n-m\} \subseteq S \subseteq \mathrm{Occ}_k^H(P, T)$$

s.t.
$$gcd(S) = gcd(Occ_k^H(P, T)).$$

• Alice sends S and MI(x) for all $x \in S$.

- Construct S iteratively.
- Try to add to S elements from $Occ_k^H(P, T)$ one by one.
- For each element x either $\gcd(S \cup \{x\}) = \gcd(S)$ or $\gcd(S \cup \{x\}) \leq \gcd(S)/2$.

- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

 T bebebebebebebebebabcbabcbabababa
- P bebebebebebebebababa

$$k = 4$$

$$k = 4$$

$$\mathsf{Occ}_k^H(P,T)=\{0\}$$

$$k = 4$$

$$\operatorname{Occ}_k^H(P,T) = \{0,2\}$$

$$k = 4$$

$$Occ_k^H(P, T) = \{0, 2, 4\}$$

$$k = 4$$

$$Occ_k^H(P, T) = \{0, 2, 4, 6\}$$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T bebebebebebebebebebabcbabcbabcbabababa

$$k = 4$$

$$Occ_k^H(P, T) = \{0, 2, 4, 6\}$$

Alice sends
$$S = \{0, 2, 6\}$$


```
Bob receives S = \{0, 2, 6\}
and \{(15, c, a), (17, a, c), (21, a, c)\}\}
\{(13, e, a), (19, a, c)\}
\{(9, e, a), (11, e, c), (13, e, a)\}
```

```
Bob receives S = \{0, 2, 6\}
and \{(15, c, a), (17, a, c), (21, a, c)\}\}
\{(13, e, a), (19, a, c)\}
\{(9, e, a), (11, e, c), (13, e, a)\}
```

```
Bob receives S = \{0, 2, 6\}
and \{(15, c, a), (17, a, c), (21, a, c)\}\}
\{(13, e, a), (19, a, c)\}
\{(9, e, a), (11, e, c), (13, e, a)\}
```



```
Bob receives S = \{0, 2, 6\}
and \{(15, c, a), (17, a, c), (21, a, c)\}\}
\{(13, e, a), (19, a, c)\}
\{(9, e, a), (11, e, c), (13, e, a)\}
```



```
Bob receives S = \{0, 2, 6\}
and \{(15, c, a), (17, a, c), (21, a, c)\}\}
\{(13, e, a), (19, a, c)\}
\{(9, e, a), (11, e, c), (13, e, a)\}
```

Inference graph **G**_S

Bob receives
$$S = \{0, 2, 6\}$$

and $\{(15, c, a), (17, a, c), (21, a, c)\}\}$
 $\{(13, e, a), (19, a, c)\}$
 $\{(9, e, a), (11, e, c), (13, e, a)\}$

Bob receives
$$S = \{0, 2, 6\}$$

and $\{(15, c, a), (17, a, c), (21, a, c)\}\}$
 $\{(13, e, a), (19, a, c)\}$
 $\{(9, e, a), (11, e, c), (13, e, a)\}$

Red connected component (at least one red edge)

Bob receives
$$S = \{0, 2, 6\}$$

and $\{(15, c, a), (17, a, c), (21, a, c)\}\}$
 $\{(13, e, a), (19, a, c)\}$
 $\{(9, e, a), (11, e, c), (13, e, a)\}$

What Bob Receives

Alice selects a subset

$$\{0, n - m\} \subseteq S \subseteq \operatorname{Occ}_{k}^{H}(P, T)$$

s.t.
 $\gcd(S) = \gcd(\operatorname{Occ}_{k}^{H}(P, T)).$

• Alice sends S and MI(x) for all $x \in S$.

- Bob receives S and MI(x) for all $x \in S$.
- Bob constructs the graph $G_S = (V, E)$:
 - $V = \{t_0, \dots, t_{n-1}, p_0, \dots, p_{m-1}\}$, and
 - $\{t_{i+j}, p_i\} \in E$ for all $i \in S, j \in [0..m)$, edge is red if is a mismatch, otw it is **black**.

The Structure of Connected Components in G_S

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Lemma

Let $g := \gcd(S)$. Then, \mathbf{G}_S has g connected components. Moreover, the i-th connected component for $i \in [0..g)$ contains

$${p_j \mid j \equiv_{\mathbf{g}} i} \cup {t_j \mid j \equiv_{\mathbf{g}} i}.$$

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Lemma

Let $g := \gcd(S)$. Then, \mathbf{G}_S has g connected components. Moreover, the i-th connected component for $i \in [0..g)$ contains

$${p_j \mid j \equiv_{\mathbf{g}} i} \cup {t_j \mid j \equiv_{\mathbf{g}} i}.$$

• Construct strings $P^{\$}$, $T^{\$}$ from P, T by replacing each character with a sentinel character unique to the connected component in G_S the character is contained.

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Lemma

$${p_j \mid j \equiv_{\mathsf{g}} i} \cup {t_j \mid j \equiv_{\mathsf{g}} i}.$$

- Construct strings $P^{\$}$, $T^{\$}$ from P, T by replacing each character with a sentinel character unique to the connected component in G_S the character is contained.
- For each $x \in S$, we have $x \in Occ(P^{\$}, T^{\$})$. Thus, $S \subseteq Occ(P^{\$}, T^{\$})$.

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Lemma

$${p_j \mid j \equiv_g i} \cup {t_j \mid j \equiv_g i}.$$

- Construct strings $P^{\$}$, $T^{\$}$ from P, T by replacing each character with a sentinel character unique to the connected component in G_S the character is contained.
- For each $x \in S$, we have $x \in Occ(P^{\$}, T^{\$})$. Thus, $S \subseteq Occ(P^{\$}, T^{\$})$.
- As $\{0, n-m\} \subseteq Occ(P^{\$}, T^{\$})$, we can apply the Apply Periodicity Lemma.

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Lemma

$${p_j \mid j \equiv_g i} \cup {t_j \mid j \equiv_g i}.$$

- Construct strings $P^{\$}$, $T^{\$}$ from P, T by replacing each character with a sentinel character unique to the connected component in G_S the character is contained.
- For each $x \in S$, we have $x \in Occ(P^{\$}, T^{\$})$. Thus, $S \subseteq Occ(P^{\$}, T^{\$})$.
- As $\{0, n-m\} \subseteq Occ(P^{\$}, T^{\$})$, we can apply the Apply Periodicity Lemma.
- The period of $P^{\$}$ and $T^{\$}$ is at most $gcd(Occ(P^{\$}, T^{\$})) \leq g$

Periodicity Lemma Readapted [FW65]

If $n \leq 3/2 \cdot m$ and $\{0, n-m\} \subseteq Occ(P, T)$, then gcd(Occ(P, T)) is a period of T.

Lemma

$${p_j \mid j \equiv_{\mathsf{g}} i} \cup {t_j \mid j \equiv_{\mathsf{g}} i}.$$

- Construct strings $P^{\$}$, $T^{\$}$ from P, T by replacing each character with a sentinel character unique to the connected component in \mathbf{G}_{S} the character is contained.
- For each $x \in S$, we have $x \in Occ(P^{\$}, T^{\$})$. Thus, $S \subseteq Occ(P^{\$}, T^{\$})$.
- As $\{0, n-m\} \subseteq Occ(P^{\$}, T^{\$})$, we can apply the Apply Periodicity Lemma.
- The period of $P^{\$}$ and $T^{\$}$ is at most $gcd(Occ(P^{\$}, T^{\$})) \leq g$
- G_S has at most g connected components.

Bob constructs $P^{\#}$ and $T^{\#}$

Alice selects a subset

$$\{0, n - m\} \subseteq S \subseteq \operatorname{Occ}_{k}^{H}(P, T)$$

s.t. $\gcd(S) = \gcd(\operatorname{Occ}_{k}^{H}(P, T))$.

• Alice sends S and MI(x) for all $x \in S$.

- Bob receives S and MI(x) for all $x \in S$.
- Bob constructs the graph $G_S = (V, E)$:
 - $V = \{t_0, \dots, t_{n-1}, p_0, \dots, p_{m-1}\}$, and
 - $\{t_{i+j}, p_i\} \in E$ for all $i \in S, j \in [0..m)$, edge is red if is a mismatch, otw it is **black**.
- Bob construct strings P[#], T[#] from P, T by replacing each character contained in a black component in G_S with a sentinel character (unique to the component the character is contained).
- Bob computes $\operatorname{Occ}_k^H(P^\#, T^\#)$.

Examples for $P^{\#}$ and $T^{\#}$

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T# e # e # e # e # e # e # e # e # a # c # a # a # a # a # a

P# # e # e # e # e # e # e # e # e # c # a # a # a # a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
```

Lemma

 $\operatorname{Occ}_k^H(P^\#, T^\#) = \operatorname{Occ}_k^H(P, T).$

Lemma

$$\operatorname{Occ}_k^H(P^\#, T^\#) = \operatorname{Occ}_k^H(P, T).$$

• $\operatorname{Occ}_k^H(P,T) \subseteq \operatorname{Occ}_k^H(P^\#,T^\#)$:

Lemma

 $\operatorname{Occ}_k^H(P^\#, T^\#) = \operatorname{Occ}_k^H(P, T).$

- $\operatorname{Occ}_k^H(P,T) \subseteq \operatorname{Occ}_k^H(P^\#,T^\#)$:
 - $P^{\#}[i] = T^{\#}[j]$ implies P[i] = T[j].

Lemma

 $\operatorname{Occ}_{k}^{H}(P^{\#}, T^{\#}) = \operatorname{Occ}_{k}^{H}(P, T).$

- $\operatorname{Occ}_k^H(P,T) \subseteq \operatorname{Occ}_k^H(P^\#,T^\#)$:
 - $P^{\#}[i] = T^{\#}[j]$ implies P[i] = T[j].
 - Thus, $HD(P^{\#}, T^{\#}[i..i + m)) \ge HD(P, T[i..i + m))$ for all i.

$$\operatorname{Occ}_{k}^{H}(P^{\#}, T^{\#}) = \operatorname{Occ}_{k}^{H}(P, T).$$

- $\operatorname{Occ}_k^H(P,T) \subseteq \operatorname{Occ}_k^H(P^\#,T^\#)$:
 - $P^{\#}[i] = T^{\#}[j]$ implies P[i] = T[j].
 - Thus, $HD(P^{\#}, T^{\#}[i..i + m)) \ge HD(P, T[i..i + m))$ for all i.
- $\operatorname{Occ}_k^H(P^\#, T^\#) \subseteq \operatorname{Occ}_k^H(P, T)$:

$$\operatorname{Occ}_{k}^{H}(P^{\#}, T^{\#}) = \operatorname{Occ}_{k}^{H}(P, T).$$

- $\operatorname{Occ}_k^H(P,T) \subseteq \operatorname{Occ}_k^H(P^\#,T^\#)$:
 - $P^{\#}[i] = T^{\#}[j]$ implies P[i] = T[j].
 - Thus, $HD(P^{\#}, T^{\#}[i..i + m)) \ge HD(P, T[i..i + m))$ for all i.
- $\operatorname{Occ}_k^H(P^\#, T^\#) \subseteq \operatorname{Occ}_k^H(P, T)$:
 - Fix $i \in \operatorname{Occ}_k^H(P, T)$ and $j \in [0..m)$

$$\operatorname{Occ}_{k}^{H}(P^{\#}, T^{\#}) = \operatorname{Occ}_{k}^{H}(P, T).$$

- $\operatorname{Occ}_k^H(P,T) \subseteq \operatorname{Occ}_k^H(P^\#,T^\#)$:
 - $P^{\#}[i] = T^{\#}[j]$ implies P[i] = T[j].
 - Thus, $HD(P^{\#}, T^{\#}[i..i + m)) \ge HD(P, T[i..i + m))$ for all i.
- $\operatorname{Occ}_k^H(P^\#, T^\#) \subseteq \operatorname{Occ}_k^H(P, T)$:
 - Fix $i \in Occ_k^H(P, T)$ and $j \in [0..m)$
 - As $i \mid g$ for $g = \gcd(S) = \gcd(\operatorname{Occ}_k^H(P, T))$, we have $j \equiv_g i + j$.

$$\operatorname{Occ}_{k}^{H}(P^{\#}, T^{\#}) = \operatorname{Occ}_{k}^{H}(P, T).$$

- $\operatorname{Occ}_k^H(P,T) \subseteq \operatorname{Occ}_k^H(P^\#,T^\#)$:
 - $P^{\#}[i] = T^{\#}[j]$ implies P[i] = T[j].
 - Thus, $HD(P^{\#}, T^{\#}[i..i+m)) \ge HD(P, T[i..i+m))$ for all i.
- $\operatorname{Occ}_k^H(P^\#, T^\#) \subseteq \operatorname{Occ}_k^H(P, T)$:
 - Fix $i \in \operatorname{Occ}_k^H(P, T)$ and $j \in [0..m)$
 - As $i \mid g$ for $g = \gcd(S) = \gcd(\operatorname{Occ}_k^H(P, T))$, we have $j \equiv_g i + j$.
 - Thus, p_j and t_{j+i} are contained in the same connected component:
 - If the component is black, then $P^{\#}[j] = T^{\#}[j+i]$ and P[j] = T[j+i].
 - If the component is red, then $P^{\#}[j] = P[j]$ and $P^{\#}[i+j] = P[i+j]$.

Lemma

 $\operatorname{Occ}_k^H(P^\#, T^\#) = \operatorname{Occ}_k^H(P, T).$

- $\operatorname{Occ}_k^H(P,T) \subseteq \operatorname{Occ}_k^H(P^\#,T^\#)$:
 - $P^{\#}[i] = T^{\#}[j]$ implies P[i] = T[j].
 - Thus, $HD(P^{\#}, T^{\#}[i..i+m)) \ge HD(P, T[i..i+m))$ for all i.
- $\operatorname{Occ}_k^H(P^\#, T^\#) \subseteq \operatorname{Occ}_k^H(P, T)$:
 - Fix $i \in \operatorname{Occ}_k^H(P, T)$ and $j \in [0..m)$
 - As $i \mid g$ for $g = \gcd(S) = \gcd(\operatorname{Occ}_{\iota}^{H}(P, T))$, we have $i \equiv_{\sigma} i + i$.
 - Thus, p_i and t_{i+j} are contained in the same connected component:
 - If the component is black, then $P^{\#}[j] = T^{\#}[j+i]$ and P[j] = T[j+i].
 - If the component is red, then $P^{\#}[j] = P[j]$ and $P^{\#}[i+j] = P[i+j]$.
 - As j was arbitrary, $HD(P^{\#}, T^{\#}[i..i + m)) = HD(P, T[i..i + m))$ and $i \in Occ_k^H(P^{\#}, T^{\#})$.

Pattern Matching with Edits

Suppose Alice takes a set S of alignments of cost at most k,

Suppose Alice takes a set S of alignments of cost at most k, and sends to Bob only the information about edits.

• Bob reconstructs the alignments in S.

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components,

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components,

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

Mapping Back the Periodic Structure to the Original Strings

T_{|S} 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5

P_{|S} 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5

Mapping Back the Periodic Structure to the Original Strings

```
T<sub>|S</sub> 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2
```

```
P_{|S} \qquad \qquad 0 \; 1 \; 2 \; 3 \; 4 \; 5 \; 6 \; 7 \; 8 \; 0 \; 1 \; 2 \; 3 \; 4 \; 5 \; 6 \; 7 \; 8 \; 0 \; 1 \; 2 \; 3 \; 4 \; 5
```

P a a 0 1 2 3 4 5 6 7 8 0 1 2 3 b b 4 5 6 7 8 0 1 2 3 a 4 5

Mapping Back the Periodic Structure to the Original Strings

• Consider an arbitrary alignment $\mathcal{X}: P \leadsto T[t ... t')$ of cost at most k.

- Consider an arbitrary alignment $\mathcal{X}: P \leadsto T[t ... t')$ of cost at most k.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

- Consider an arbitrary alignment $\mathcal{X}: P \leadsto T[t ... t')$ of cost at most k.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case
$$\Delta = \widetilde{\Omega}(k)$$
 (large)

- Consider an arbitrary alignment $\mathcal{X}: P \leadsto T[t ... t')$ of cost at most k.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\Omega}(k)$ (large) \Longrightarrow if \mathcal{X} is added to S, the # of black components at least halves.

- Consider an arbitrary alignment $\mathcal{X}: P \leadsto T[t ... t')$ of cost at most k.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case
$$\Delta = \widetilde{\mathcal{O}}(k)$$
 (small)

Alignments Covered by S

- Consider an arbitrary alignment $\mathcal{X}: P \leadsto T[t ... t')$ of cost at most k.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case
$$\Delta = \widetilde{\mathcal{O}}(k)$$
 (small)

Alignments Covered by S

- Consider an arbitrary alignment $\mathcal{X}: P \leadsto T[t ... t')$ of cost at most k.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

encoding cost
$$=\widetilde{\mathcal{O}}(k)$$

Case
$$\Delta = \widetilde{\mathcal{O}}(k)$$
 (small)

Alignments Covered by S

- Consider an arbitrary alignment $\mathcal{X}: P \leadsto T[t ... t')$ of cost at most k.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \tilde{\mathcal{O}}(k)$ (small) \Longrightarrow there exists alignment with the same cost of \mathcal{X} that matches characters in the same uncovered black components.

Algorithmic Applications: Compressed Construction of $P^{\#}$ and $T^{\#}$

• Let's take a step back.

- Let's take a step back.
- What we saw for mismatches:
 - 1. Bob receives a set $S \subseteq \operatorname{Occ}_k^H(P, H)$ s.t. $|S| = \mathcal{O}(\log n)$ and $x \in \operatorname{MI}(x)$ for all $x \in S$.

- Let's take a step back.
- What we saw for mismatches:
 - 1. Bob receives a set $S \subseteq \operatorname{Occ}_k^H(P, H)$ s.t. $|S| = \mathcal{O}(\log n)$ and $x \in \operatorname{MI}(x)$ for all $x \in S$.
 - 2. Bob constructs graph G_S , propagates characters through red components, and replaces sentinel characters in black component (unique to the connected component).

- Let's take a step back.
- What we saw for mismatches:
 - 1. Bob receives a set $S \subseteq \operatorname{Occ}_k^H(P, H)$ s.t. $|S| = \mathcal{O}(\log n)$ and $x \in \operatorname{MI}(x)$ for all $x \in S$.
 - 2. Bob constructs graph G_S , propagates characters through red components, and replaces sentinel characters in black component (unique to the connected component).
 - 3. Bob obtains string $P^{\#}$ and $T^{\#}$ equivalent to P and T w.r.t. PM with k mismatches.

- Let's take a step back.
- What we saw for mismatches:
 - 1. Bob receives a set $S \subseteq \operatorname{Occ}_k^H(P, H)$ s.t. $|S| = \mathcal{O}(\log n)$ and $x \in \operatorname{MI}(x)$ for all $x \in S$.
 - 2. Bob constructs graph G_S , propagates characters through red components, and replaces sentinel characters in black component (unique to the connected component).
 - 3. Bob obtains string $P^{\#}$ and $T^{\#}$ equivalent to P and T w.r.t. PM with k mismatches.
- $P^{\#}$ and $T^{\#}$ have low space representation of $\widetilde{\mathcal{O}}(k)$.

- Let's take a step back.
- What we saw for mismatches:
 - 1. Bob receives a set $S \subseteq \operatorname{Occ}_k^H(P,H)$ s.t. $|S| = \mathcal{O}(\log n)$ and $x \in \operatorname{MI}(x)$ for all $x \in S$.
 - 2. Bob constructs graph G_S , propagates characters through red components, and replaces sentinel characters in black component (unique to the connected component).
 - 3. Bob obtains string $P^{\#}$ and $T^{\#}$ equivalent to P and T w.r.t. PM with k mismatches.
- ullet $P^{\#}$ and $T^{\#}$ have low space representation of $\widetilde{\mathcal{O}}(k)$.
- But naive construction is linear in time! Can we do better?

- Let's take a step back.
- What we saw for mismatches:
 - 1. Bob receives a set $S \subseteq \operatorname{Occ}_k^H(P,H)$ s.t. $|S| = \mathcal{O}(\log n)$ and $x \in \operatorname{MI}(x)$ for all $x \in S$.
 - 2. Bob constructs graph G_S , propagates characters through red components, and replaces sentinel characters in black component (unique to the connected component).
 - 3. Bob obtains string $P^{\#}$ and $T^{\#}$ equivalent to P and T w.r.t. PM with k mismatches.
- $P^{\#}$ and $T^{\#}$ have low space representation of $\widetilde{\mathcal{O}}(k)$.
- But naive construction is linear in time! Can we do better?
- Can we have fast construction of low-space representation of $P^{\#}, T^{\#}$, e.g. using grammars?

Theorem [KNW25]

Theorem [KNW25]

Given S and $\mathrm{MI}(x)$ for all $x \in S$, we can construct a grammar-like representation $P^\#$ and $T^\#$ of size $\widetilde{\mathcal{O}}(k)$ in time $\widetilde{\mathcal{O}}(k^2)$. The grammar supports $\widetilde{\mathcal{O}}(1)$ time PILLAR operations.

• PILLAR operations: longest common prefix, internal pattern matching queries, etc...

Theorem [KNW25]

- PILLAR operations: longest common prefix, internal pattern matching queries, etc...
- [CKW20]: output (representation of) $\operatorname{Occ}_k^H(P,T)$ using $\mathcal{O}(k^2)$ PILLAR operations.

Theorem [KNW25]

- PILLAR operations: longest common prefix, internal pattern matching queries, etc...
- [CKW20]: output (representation of) $\operatorname{Occ}_k^H(P,T)$ using $\mathcal{O}(k^2)$ PILLAR operations.
- This means:
 - 1. Bob can construct a grammar for $P^{\#}$ and $T^{\#}$ in $\widetilde{\mathcal{O}}(k^2)$ time, and

Theorem [KNW25]

- PILLAR operations: longest common prefix, internal pattern matching queries, etc...
- [CKW20]: output (representation of) $\operatorname{Occ}_k^H(P,T)$ using $\mathcal{O}(k^2)$ PILLAR operations.
- This means:
 - 1. Bob can construct a grammar for $P^\#$ and $T^\#$ in $\widetilde{\mathcal{O}}(k^2)$ time, and
 - 2. Bob can compute $\operatorname{Occ}_k^H(P^\#, T^\#) = \operatorname{Occ}_k^H(P, T)$ in $\widetilde{\mathcal{O}}(k^2)$ time.

Theorem [KNW25]

Given S and $\mathrm{MI}(x)$ for all $x \in S$, we can construct a grammar-like representation $P^\#$ and $T^\#$ of size $\widetilde{\mathcal{O}}(k)$ in time $\widetilde{\mathcal{O}}(k^2)$. The grammar supports $\widetilde{\mathcal{O}}(1)$ time PILLAR operations.

- PILLAR operations: longest common prefix, internal pattern matching queries, etc...
- [CKW20]: output (representation of) $\operatorname{Occ}_k^H(P,T)$ using $\mathcal{O}(k^2)$ PILLAR operations.
- This means:
 - 1. Bob can construct a grammar for $P^{\#}$ and $T^{\#}$ in $\widetilde{\mathcal{O}}(k^2)$ time, and
 - 2. Bob can compute $\operatorname{Occ}_k^H(P^\#, T^\#) = \operatorname{Occ}_k^H(P, T)$ in $\widetilde{\mathcal{O}}(k^2)$ time.

Theorem [KNW25]

Given N equality equations of the form X[i..j) = X[i'..j') on a length-n string X, we can construct in time $\widetilde{\mathcal{O}}(N^2)$ a grammar-like representation of size $\widetilde{\mathcal{O}}(N)$ of a strings Y which:

- 1. satisfies all N equations, and
- 2. Y[i] = Y[j] only when dictated by the equations.

Algorithmic Applications: Quantum Algorithms

• Instead of computing directly $Occ_k^H(P, T)$ compute in through $Occ_k^H(P^\#, T^\#)$.

- Instead of computing directly $\operatorname{Occ}_k^H(P,T)$ compute in through $\operatorname{Occ}_k^H(P^\#,T^\#)$.
- **Problem:** constructing $P^{\#}$, $T^{\#}$ requires S s.t. $\{0, n-m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$ and $\gcd(S) = \gcd(\operatorname{Occ}_k^H(P, T))$.

- Instead of computing directly $\operatorname{Occ}_k^H(P,T)$ compute in through $\operatorname{Occ}_k^H(P^\#,T^\#)$.
- Problem: constructing $P^\#$, $T^\#$ requires S s.t. $\{0, n-m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$ and $\gcd(S) = \gcd(\operatorname{Occ}_k^H(P, T))$. But $\operatorname{Occ}_k^H(P, T)$ is exactly what we want to compute!

- Instead of computing directly $\operatorname{Occ}_k^H(P,T)$ compute in through $\operatorname{Occ}_k^H(P^\#,T^\#)$.
- **Problem:** constructing $P^\#$, $T^\#$ requires S s.t. $\{0, n-m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$ and $\gcd(S) = \gcd(\operatorname{Occ}_k^H(P, T))$. But $\operatorname{Occ}_k^H(P, T)$ is exactly what we want to compute!
- Workaround:
 - Find $\operatorname{Occ}_k^H(P,T) \subseteq C \subseteq \operatorname{Occ}_{5k}^H(P,T)$
 - Compute S s.t. $\{0, n-m\} \subseteq S \subseteq C$ and gcd(S) = gcd(C)

Constructing S through a Candidate Set

Constructing S through a Candidate Set

Constructing S through a Candidate Set

We apply our communication complexity results to the quantum setting:

ullet Input string S given as oracle where queries can be made in **superposition**

- ullet Input string S given as oracle where queries can be made in **superposition**
- Query complexity Q(n): counts number of queries to oracle

- ullet Input string S given as oracle where queries can be made in **superposition**
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

- ullet Input string S given as oracle where queries can be made in **superposition**
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

	Query Complexity	Time Complexity	Refererence
PM with mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	[JN23]

- ullet Input string S given as oracle where queries can be made in **superposition**
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

	Query Complexity	Time Complexity	Refererence
PM with mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	[JN23]
PM with edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	[KNW24]

- Input string S given as oracle where queries can be made in **superposition**
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

	Query Complexity	Time Complexity	Refererence
PM with mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	[JN23]
PM with edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	[KNW24]
PM with mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	[KNW25]

- ullet Input string S given as oracle where queries can be made in **superposition**
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

	Query Complexity	Time Complexity	Refererence
PM with mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	[JN23]
PM with edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	[KNW24]
PM with mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	[KNW25]
PM with edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{kn}+k^{3.5})$	[KNW25]

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in **superposition**
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

	Query Complexity	Time Complexity	Refererence
PM with mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	[JN23]
PM with edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	[KNW24]
PM with mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	[KNW25]
PM with edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{kn}+k^{3.5})$	[KNW25]

 \blacktriangleright The number of queries are optimal for k=o(n) (up to a logarithmic / subpolynomial factors).

Thanks!