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Text T, |T|=n Ababababbbabbaaabbbabbaa

NN

Pattern P, |[P| =m babbbabbaa

x~ O

=3

e Exact PM: Compute Occ(P, T) :={x| T[x..x+ m) = P}.
® PM with mismatches: Compute Occ/(P, T) := {x | HD(T[x..x + m), P) < k}.

* PM with edits: Compute OccE(P, T) := {x |3y ED(T[x..y),P) < k}.
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Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses @ Alice sends @ Bob needs to
PM instance. the input. compressed data to reconstructs the

Text T, Pattern P, Bob. output of the
Threshold k instance.

Set OccE(P, T)

Communication Complexity = “minimum # of machine words to send to Bob”
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Example: Exact PM

Text T

Pattern P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
abbabaabaabaabaabaabaabaabaabb

abaabaabaabaabaab
A - U U U

Bob needs to reconstruct Occ(P, T) = {3,6,9,12}
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Previous Results

[ Interesting case: n < 3/2-m ]
uB LB  Refererence
Exact PM 0(1) Q(1) Periodicity Lemma, [FW65]
PM with mismatches O(k) Q(k) [CKP19]
PM with edits O(k3) [CKW20]

PM with edits O(klogm) (k) This Work
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Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

® Bob reconstructs the alignments in S.
® Bob makes a graph out of it.

® Bob selects red connected components, and
Tis 01201201 propagates characters in them.
~_ T~

p ® Bob selects black connected components, and
[S 0\12/0\_1 numbers them.
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Mapping Back the Periodic Structure to the Original Strings
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P\S 012345678012345678012345
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Mapping Back the Periodic Structure to the Original Strings

ﬂs 012345678012345678012345678012345678012345

T b012345678a0123b4567801232a45678a012345678012a345

HS 012345678012345678012345

P 220123456780123bb456780123a45
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Mapping Back the Periodic Structure to the Original Strings

Tis 012345678012345678012345678012345678012345

T b0/12345678a0123b456786123aa456783\012345678\012a345

T0 1 T2 T3 T4
Ps 012345678012345678012345
P 2a20123456780123bb456780123245
o T T
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Alignments Covered by S
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e Consider an arbitrary alignment X : P~ T[t..t").

e Compute A = min; |1; — t — mg|.
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Case A = Q(k) (large) => if X is added to S, the # of black components at least halves.

8/11



Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

A
T | ;IH; HH— H i — ——1 i
P ! ! |

Case A = O(k) (small)

8/11



Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

T 5 HH— H

P T —— ———

Case A = O(k) (small)

8/11



Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

T H—=———HH———H—————

P H—H H—!1— H —I—

Case A = O(k) (small)

8/11



Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

T

P

encoding cost = O(k)

Case A = O(k) (small) => there exists alignment with the same cost of X that matches
characters in the same uncovered black components.

8/11



Pattern Matching in the Quantum Setting

We apply our communication complexity results to the quantum setting:

® Input string S given as oracle where queries can be made in superposition
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Theorem [KNW'24]

There is a quantum algorithm that, given a PM with edits instance:
e computes Occt (P, T) using O(n/m - \/km) queries and O(n/m - (Vkm + k%)) time;
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We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

Theorem [KNW'24]

There is a quantum algorithm that, given a PM with edits instance:
e computes Occt (P, T) using O(n/m - \/km) queries and O(n/m - (Vkm + k%)) time;
* decides whether OccE(P, T) # 0 using O(y/n/m - \km) queries and O(y/n/m - (V'km + k35))

time.

» The number of queries is optimal for k = o(m) (up to a subpolynomial factor).
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Main ingredients

e Structural insights for approximate pattern matching [CKW20].
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Thanks!



