On the Communication Complexity

of Approximate Pattern Matching

Tomasz Kociumaka' Jakob Nogler? Philip Wellnitz®

IMax Planck Institute for Informatics, SIC (— INSAIT)
2ETH Zurich (work mostly carried out during summer internship at MPI)

3National Institute of Informatics, SOKENDAI

1/11

Pattern Matching (PM)

Text T, |T|=n abaababababbbabbaaabbbabbaa

Pattern P, [Pl=m abababbbabbaa

2/11

Pattern Matching (PM)

Text T, |T|=n abaab abbbabbaa

Pattern P, |[P| =m

¢ Exact PM: Compute Occ(P, T) :={x | T[x..x+ m) = P}.

2/11

Pattern Matching (PM)

Text T, |T|=n abaababababbbabbaaabbbabbaa

k=2

Pattern P, |[P| =m

e Exact PM: Compute Occ(P, T) :={x| T[x..x+ m) = P}.

* PM with mismatches: Compute Occl(P, T) := {x | HD(T[x..x 4+ m),P) < k}.

2/11

Pattern Matching (PM)

Text T, |T|=n Ababababbbabbaaabbbabbaa

NN

Pattern P, |[P| =m babbbabbaa

x~ O

=3

e Exact PM: Compute Occ(P, T) :={x| T[x..x+ m) = P}.
® PM with mismatches: Compute Occ/(P, T) := {x | HD(T[x..x + m), P) < k}.

* PM with edits: Compute OccE(P, T) := {x |3y ED(T[x..y),P) < k}.

2/11

Communication Complexity

Alice

¥ Bob

One-way protocol

3/11

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a
PM instance.
Text T, Pattern P,
Threshold k

3/11

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses
PM instance. the input.

Text T, Pattern P,
Threshold k

3/11

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses @ Alice sends

PM instance. the input. compressed data to
Text T, Pattern P, Bob.
Threshold k

3/11

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses @ Alice sends @ Bob needs to
PM instance. the input. compressed data to reconstructs the

Text T, Pattern P, Bob. output of the
Threshold k instance.

Set OccE(P, T)

3/11

Communication Complexity

Alice

¥ Bob

One-way protocol

@ Alice receives a @ Alice compresses @ Alice sends @ Bob needs to
PM instance. the input. compressed data to reconstructs the

Text T, Pattern P, Bob. output of the
Threshold k instance.

Set OccE(P, T)

Communication Complexity = “minimum # of machine words to send to Bob”

3/11

Example: Exact PM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Text T abbabaabaabaabaabaabaabaabaabb

Pattern P abaabaabaabaabaab

4/11

Example: Exact PM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Text T abbabaabaabaabaabaabaabaabaabb

Pattern P abaabaabaabaabaab

Bob needs to reconstruct Occ(P, T) = {3,6,9,12}

4/11

Example: Exact PM

Text T

Pattern P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
abbabaabaabaabaabaabaabaabaabb

abaabaabaabaabaab
A - U U U

Bob needs to reconstruct Occ(P, T) = {3,6,9,12}

4/11

Previous Results

[Interesting case: n < 3/2-m]

5/11

Previous Results

[Interesting case: n < 3/2-m]

uB LB Refererence
Exact PM 0(1) Q(1) Periodicity Lemma, [FW65]

5/11

Previous Results

[Interesting case: n < 3/2-m]
uB LB Refererence
Exact PM 0(1) Q(1) Periodicity Lemma, [FW65]

PM with mismatches O(k) Q(k) [CKP19]

5/11

Previous Results

[Interesting case: n < 3/2-m]
uB LB Refererence
Exact PM 0(1) Q(1) Periodicity Lemma, [FW65]
PM with mismatches O(k) Q(k) [CKP19]
PM with edits O(k3) [CKW20]

PM with edits O(klogm) (k) This Work

5/11

Finding a Period Structure

Suppose Alice takes a set S of alignments,

T H T

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

P ebaeeeeee
||

a
|
T eebeeeabeeeebecde

P o e a0 000 306

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

® Bob reconstructs the alignments in S.

P ebaeeeeaeoe
T eebee l L é l i i l i i l
- LN

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

® Bob reconstructs the alignments in S.

® Bob makes a graph out of it.
T eebeeeabeeeeboece

NEEESR

P ebaoeeeeaeoe

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

® Bob reconstructs the alignments in S.
® Bob makes a graph out of it.

® Bob selects red connected components,

T e Db abe be
P bae ae

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

® Bob reconstructs the alignments in S.
® Bob makes a graph out of it.

® Bob selects red connected components, and

T W propagates characters in them.
P bab ab

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

® Bob reconstructs the alignments in S.

® Bob makes a graph out of it.

Bob selects red connected components, and
T e o oo o oo 4 propagates characters in them.

|

Bob selects black connected components,

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

TO

120

120

120

Bob reconstructs the alignments in S.
Bob makes a graph out of it.

Bob selects red connected components, and
propagates characters in them.

Bob selects black connected components, and
numbers them.

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

TO

120

120

120

Bob reconstructs the alignments in S.
Bob makes a graph out of it.

Bob selects red connected components, and
propagates characters in them.

Bob selects black connected components, and
numbers them.

6/11

Finding a Period Structure

Suppose Alice takes a set S of alignments, and sends to Bob only the information about edits.

® Bob reconstructs the alignments in S.
® Bob makes a graph out of it.

® Bob selects red connected components, and
Tis 01201201 propagates characters in them.
~_ T~

p ® Bob selects black connected components, and
[S 0\12/0_1 numbers them.

6/11

Mapping Back the Periodic Structure to the Original Strings

T\s 012345678012345678012345678012345678012345

P\S 012345678012345678012345

7/11

Mapping Back the Periodic Structure to the Original Strings

ﬂs 012345678012345678012345678012345678012345

T b012345678a0123b4567801232a45678a012345678012a345

HS 012345678012345678012345

P 220123456780123bb456780123a45

7/11

Mapping Back the Periodic Structure to the Original Strings

Tis 012345678012345678012345678012345678012345

T b0/12345678a0123b456786123aa456783\012345678\012a345

T0 1 T2 T3 T4
Ps 012345678012345678012345
P 2a20123456780123bb456780123245
o T T

7/11

Alignments Covered by S

T 1 '} LI Ll '} Ll '} '} [| '} 1
I | | LILILILI | | LILJ | | | | LI | | 1
T0 T1 T2 T3 T4 75
P —_——— ———
To T Uy

8/11

Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").

t t/
T 1 '} LI Ll '} Ll '} '} [| '} 1
I ! | | LILILILI | | LILJ LI | | LI | | 1
T0 : T1 T2 7'3: T4 Ts
| |
| |
| |
P S __ —— ——
70 1 T2

8/11

Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

A /
t l_l t
T - — H—t I - — |
T0 o T1 T2 T3 T4 Ts
P C—_— —— ——

8/11

Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

A /
tl_| t
T — i H-+H—1 H i i ——t /
Y |
P [|

Case A = Q(k) (large)

8/11

Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").

e Compute A = min; |1; — t — mg|.

Ac /
t I_| t
T I i c HH i H i i H i |

Case A = Q(k) (large) => if X is added to S, the # of black components at least halves.

8/11

Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

A
T | ;IH; HH— H i — ——1 i
P ! ! |

Case A = O(k) (small)

8/11

Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

T 5 HH— H

P T —— ———

Case A = O(k) (small)

8/11

Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

T H—=———HH———H—————

P H—H H—!1— H —I—

Case A = O(k) (small)

8/11

Alignments Covered by S

e Consider an arbitrary alignment X : P~ T[t..t").
e Compute A = min; |1; — t — mg|.

T

P

encoding cost = O(k)

Case A = O(k) (small) => there exists alignment with the same cost of X that matches
characters in the same uncovered black components.

8/11

Pattern Matching in the Quantum Setting

We apply our communication complexity results to the quantum setting:

® Input string S given as oracle where queries can be made in superposition

9/11

Pattern Matching in the Quantum Setting

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition

® Query complexity Q(n): counts number of queries to oracle

9/11

Pattern Matching in the Quantum Setting

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

9/11

Pattern Matching in the Quantum Setting

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

Theorem [KNW'24]

There is a quantum algorithm that, given a PM with edits instance:
e computes Occt (P, T) using O(n/m - \/km) queries and O(n/m - (Vkm + k%)) time;
* decides whether OccE(P, T) # 0 using O(y/n/m - \km) queries and O(y/n/m - (V'km + k35))

time.

9/11

Pattern Matching in the Quantum Setting

We apply our communication complexity results to the quantum setting:
® Input string S given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

Theorem [KNW'24]

There is a quantum algorithm that, given a PM with edits instance:
e computes Occt (P, T) using O(n/m - \/km) queries and O(n/m - (Vkm + k%)) time;
* decides whether OccE(P, T) # 0 using O(y/n/m - \km) queries and O(y/n/m - (V'km + k35))

time.

» The number of queries is optimal for k = o(m) (up to a subpolynomial factor).

9/11

Main ingredients

e Structural insights for approximate pattern matching [CKW20].

10/11

Main ingredients

e Structural insights for approximate pattern matching [CKW20].

¢ Quantum algorithm for computing bounded edit distance [GJKT24].

10/11

Main ingredients

e Structural insights for approximate pattern matching [CKW20].
¢ Quantum algorithm for computing bounded edit distance [GJKT24].

® Quantum Gap Edit Distance algorithm (adapted from [GKKS22]).

10/11

Main ingredients

e Structural insights for approximate pattern matching [CKW20].
¢ Quantum algorithm for computing bounded edit distance [GJKT24].
® Quantum Gap Edit Distance algorithm (adapted from [GKKS22]).

® Qur communication complexity results.

10/11

Thanks!

