On the Communication Complexity of Approximate Pattern Matching

Tomasz Kociumaka¹ **Jakob Nogler**² Philip Wellnitz³

 1 Max Planck Institute for Informatics, SIC (\rightarrow INSAIT)

 2 ETH Zurich (work mostly carried out during summer internship at MPI)

³National Institute of Informatics, SOKENDAI

Text T , $|T| = n$ a b a a b a b a b a b b a b a b a b b a b b a a

Pattern P, $|P| = m$ a b a b a b b a b b a a

Text T, |T| = n a b a a b a b a b a b b b a b b a a a b b b a b b a a Pattern P, |P| = m a b a b a b b b a b b a a

• Exact PM: Compute Occ $(P, T) := \{x \mid T[x \dots x + m] = P\}.$

- Exact PM: Compute Occ $(P, T) := \{x \mid T[x \dots x + m\} = P\}.$
- PM with mismatches: Compute $\mathsf{Occ}^H_k(P, T) := \{x \mid \mathsf{HD}(T[x \dots x + m), P) \leq k\}.$

Text
$$
T
$$
, $|T| = n$ a b a X b a b a b b b a a a b b b a a b b a b a a b b b a a b b a b a b a b b a a b b b a b b a a b b b a b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a a b b b a b b b a b b a b b b a b b b a b b b a b b b a b b b a

- Exact PM: Compute Occ $(P, T) := \{x \mid T[x \dots x + m\} = P\}.$
- PM with mismatches: Compute $\mathrm{Occ}_{k}^{H}(P, T) := \{x \mid \mathrm{HD}(T[x \dots x + m), P) \leq k\}.$
- PM with edits: Compute $\mathsf{Occ}^E_k(P, T) := \{x \mid \exists y \; \mathsf{ED}(T[x \mathinner{.\,.} y), P) \leq k\}.$

Communication Complexity

Alice receives a PM instance. Text T, Pattern P, Threshold k

Alice receives a PM instance. Text T , Pattern P , Threshold k

Alice compresses the input.

Bob needs to reconstructs the output of the instance. Set $Occ_k^E(P, T)$

Set $Occ_k^E(P, T)$

Communication Complexity $=$ "minimum $#$ of machine words to send to Bob"

Bob needs to reconstruct $Occ(P, T) = \{3, 6, 9, 12\}$

Bob needs to reconstruct $Occ(P, T) = \{3, 6, 9, 12\}$

Interesting case: $n \leq 3/2 \cdot m$

Interesting case: $n < 3/2 \cdot m$

Interesting case: $n \leq 3/2 \cdot m$

Interesting case: $n < 3/2 \cdot m$

Suppose Alice takes a set S of alignments,

• Bob reconstructs the alignments in S.

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.
- Bob selects red connected components,

.

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.

.

- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components,

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

- $T \t0 \t120 \t120 \t1$
- P 0 1 2 0 1
- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

 $T_{|S}$ 0 1 2 0 1 2 0 1 $P_{|S}$ 0 1 2 0 1

- Bob reconstructs the alignments in S.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

Mapping Back the Periodic Structure to the Original Strings

Mapping Back the Periodic Structure to the Original Strings

Mapping Back the Periodic Structure to the Original Strings

• Consider an arbitrary alignment $\mathcal{X}: P \rightsquigarrow \mathcal{T}[t \dots t']$.

- Consider an arbitrary alignment $\mathcal{X}: P \rightsquigarrow \mathcal{T}[t \dots t']$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

- Consider an arbitrary alignment $\mathcal{X}: P \rightsquigarrow \mathcal{T}[t \dots t']$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\Omega}(k)$ (large)

- Consider an arbitrary alignment $\mathcal{X}: P \rightsquigarrow \mathcal{T}[t \dots t']$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \Omega(k)$ (large) \implies if X is added to S, the # of black components at least halves.

- Consider an arbitrary alignment $\mathcal{X}: P \rightsquigarrow \mathcal{T}[t \dots t']$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\mathcal{O}}(k)$ (small)

- Consider an arbitrary alignment $\mathcal{X}: P \rightsquigarrow \mathcal{T}[t \dots t']$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\mathcal{O}}(k)$ (small)

- Consider an arbitrary alignment $\mathcal{X}: P \rightsquigarrow \mathcal{T}[t \dots t']$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\mathcal{O}}(k)$ (small)

- Consider an arbitrary alignment $\mathcal{X}: P \rightsquigarrow \mathcal{T}[t \dots t']$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\mathcal{O}}(k)$ (small) \implies there exists alignment with the same cost of X that matches characters in the same uncovered black components.

We apply our communication complexity results to the quantum setting:

• Input string S given as oracle where queries can be made in superposition

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in superposition
- Query complexity $Q(n)$: counts number of queries to oracle

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in superposition
- Query complexity $Q(n)$: counts number of queries to oracle
- Time complexity $T(n)$: also counts the number of elementary gates

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in superposition
- Query complexity $Q(n)$: counts number of queries to oracle
- Time complexity $T(n)$: also counts the number of elementary gates

Theorem [KNW'24]

There is a quantum algorithm that, given a PM with edits instance:

- computes $\mathrm{Occ}^E_k(P, T)$ using $\widehat{\mathcal{O}}(n/m \cdot$ √ *km*) queries and $\mathcal{O}(n/m \cdot ($ √ $\left(\overline{k}m+k^{3.5}\right))$ time;
- decides whether $\mathrm{Occ}^E_k(P, T) \neq \emptyset$ using $\widehat{\mathcal{O}}(\sqrt{n/m} \cdot$ √ \overline{km}) queries and $\mathcal{\hat{O}}(\sqrt{n/m} \cdot ($ √ $\sqrt{k}m+k^{3.5})$ time.

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in superposition
- Query complexity $Q(n)$: counts number of queries to oracle
- Time complexity $T(n)$: also counts the number of elementary gates

Theorem [KNW'24]

There is a quantum algorithm that, given a PM with edits instance:

- computes $\mathrm{Occ}^E_k(P, T)$ using $\widehat{\mathcal{O}}(n/m \cdot$ √ *km*) queries and $\mathcal{O}(n/m \cdot ($ √ $\left(\overline{k}m+k^{3.5}\right))$ time;
- decides whether $\mathrm{Occ}^E_k(P, T) \neq \emptyset$ using $\widehat{\mathcal{O}}(\sqrt{n/m} \cdot$ √ \overline{km}) queries and $\mathcal{\hat{O}}(\sqrt{n/m} \cdot ($ √ $\sqrt{k}m+k^{3.5})$ time.

 \blacktriangleright The number of queries is optimal for $k = o(m)$ (up to a subpolynomial factor).

• Structural insights for approximate pattern matching [CKW20].

- Structural insights for approximate pattern matching [CKW20].
- Quantum algorithm for computing bounded edit distance [GJKT24].
- Structural insights for approximate pattern matching [CKW20].
- Quantum algorithm for computing bounded edit distance **[GJKT24]**.
- Quantum Gap Edit Distance algorithm (adapted from [GKKS22]).
- Structural insights for approximate pattern matching **[CKW20]**.
- Quantum algorithm for computing bounded edit distance **[GJKT24]**.
- Quantum Gap Edit Distance algorithm (adapted from [GKKS22]).
- Our communication complexity results.

Thanks!