On the Communication Complexity of Approximate Pattern Matching

Tomasz Kociumaka¹ Jakob Nogler² Philip Wellnitz³

¹Max Planck Institute for Informatics, SIC (\rightarrow INSAIT)

²ETH Zurich (work mostly carried out during summer internship at MPI)

³National Institute of Informatics, SOKENDAI

Text T, |T| = n abaababababbbabbabbaabbbabbaabbaa

Pattern P, |P| = m a b a b a b b b a b b a a

• **Exact PM:** Compute $Occ(P, T) := \{x \mid T[x . . x + m) = P\}.$

- **Exact PM:** Compute $Occ(P, T) := \{x \mid T[x \dots x + m) = P\}.$
- **PM** with mismatches: Compute $Occ_k^H(P, T) := \{x \mid HD(T[x \cdot \cdot x + m), P) \le k\}$.

Text
$$T$$
, $|T| = n$
Pattern P , $|P| = m$
a b a b a b a b a b b b a b b b a b b b a b b a b b b a b b b a b b a b b a b b a b b a b b

- **Exact PM:** Compute $Occ(P, T) := \{x \mid T[x ... x + m] = P\}.$
- **PM with mismatches:** Compute $Occ_k^H(P, T) := \{x \mid HD(T[x \dots x + m), P) \le k\}$.
- **PM with edits:** Compute $Occ_k^E(P, T) := \{x \mid \exists y ED(T[x \cdot y), P) \leq k\}.$

 Alice receives a PM instance.
 Text T, Pattern P, Threshold k

1 Alice receives a PM instance. Text T, Pattern P, Threshold k

Set $Occ_k^E(P, T)$

Set $Occ_k^E(P, T)$

Communication Complexity = "minimum # of machine words to send to Bob"

	0	1	2	з	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Text T	а	b	b	а	b	а	а	b	а	а	b	а	а	b	а	а	b	а	а	b	а	а	b	а	а	b	а	а	b	b
Pattern <i>P</i>	а	b	а	а	b	а	а	b	а	а	b	а	а	b	а	а	b													

Bob needs to reconstruct $Occ(P, T) = \{3, 6, 9, 12\}$

Bob needs to reconstruct $Occ(P, T) = \{3, 6, 9, 12\}$

	UB	LB	Refererence
Exact PM	$\mathcal{O}(1)$	$\Omega(1)$	Periodicity Lemma, [FW65]
PM with mismatches	$\mathcal{O}(k)$	$\Omega(k)$	[CKP19]

Finding a Period Structure

Suppose Alice takes a set S of alignments,

• Bob reconstructs the alignments in *S*.

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components,

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.

.

- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components,

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

- *T* 0 1 2 0 1 2 0 1
- P 0 120 1

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

 $T_{|s} = \underbrace{0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1}_{P_{|s}} P_{|s} = \underbrace{0 \ 1 \ 2 \ 0 \ 1}_{0 \ 1 \ 2 \ 0 \ 1}$

- Bob reconstructs the alignments in *S*.
- Bob makes a graph out of it.
- Bob selects red connected components, and propagates characters in them.
- Bob selects black connected components, and numbers them.

Mapping Back the Periodic Structure to the Original Strings

*P*_{|S} 012345678012345678012345

Mapping Back the Periodic Structure to the Original Strings

$T_{ S }$	0 1	234	5678	0123	4567801	1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7	8012345
Т	<mark>b</mark> 01234	567	78 <mark>a</mark> 0	1 2 3 <mark>b</mark> 4	567801	2 3 a a 4 5 6 7 8 a 0 1 2 3 4	5 6 7 8 0 1 2 <mark>a</mark> 3 4 5
$P_{ S }$	01	234	5678	0123	4567801	1 2 3 4 5	
-							

P a a 0 1 2 3 4 5 6 7 8 0 1 2 3 b b 4 5 6 7 8 0 1 2 3 a 4 5

Mapping Back the Periodic Structure to the Original Strings

• Consider an arbitrary alignment $\mathcal{X} : P \rightsquigarrow T[t \dots t')$.

- Consider an arbitrary alignment $\mathcal{X} : P \rightsquigarrow T[t \cdot t')$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

- Consider an arbitrary alignment $\mathcal{X} : P \rightsquigarrow T[t \dots t')$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\Omega}(k)$ (large)

- Consider an arbitrary alignment $\mathcal{X} : P \rightsquigarrow T[t \cdot t')$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\Omega}(k)$ (large) \Longrightarrow if \mathcal{X} is added to S, the # of black components at least halves.

- Consider an arbitrary alignment $\mathcal{X} : P \rightsquigarrow T[t \dots t')$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\mathcal{O}}(k)$ (small)

- Consider an arbitrary alignment $\mathcal{X} : P \rightsquigarrow T[t \dots t')$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\mathcal{O}}(k)$ (small)

- Consider an arbitrary alignment $\mathcal{X} : P \rightsquigarrow T[t \dots t')$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \widetilde{\mathcal{O}}(k)$ (small)

- Consider an arbitrary alignment $\mathcal{X} : P \rightsquigarrow T[t \dots t')$.
- Compute $\Delta = \min_i |\tau_i t \pi_0|$.

Case $\Delta = \tilde{\mathcal{O}}(k)$ (small) \Longrightarrow there exists alignment with the same cost of \mathcal{X} that matches characters in the same uncovered black components.

We apply our communication complexity results to the quantum setting:

• Input string S given as oracle where queries can be made in superposition

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in superposition
- Query complexity Q(n): counts number of queries to oracle

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in superposition
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in superposition
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

Theorem [K**N**W'24]

There is a quantum algorithm that, given a PM with edits instance:

- computes $\operatorname{Occ}_k^{\mathcal{E}}(P, T)$ using $\widehat{\mathcal{O}}(n/m \cdot \sqrt{km})$ queries and $\widehat{\mathcal{O}}(n/m \cdot (\sqrt{km} + k^{3.5}))$ time;
- decides whether $\operatorname{Occ}_k^E(P, T) \neq \emptyset$ using $\widehat{\mathcal{O}}(\sqrt{n/m} \cdot \sqrt{km})$ queries and $\widehat{\mathcal{O}}(\sqrt{n/m} \cdot (\sqrt{km} + k^{3.5}))$ time.

We apply our communication complexity results to the quantum setting:

- Input string S given as oracle where queries can be made in superposition
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

Theorem [KNW'24]

There is a quantum algorithm that, given a PM with edits instance:

- computes $\operatorname{Occ}_k^{\mathcal{E}}(P, T)$ using $\widehat{\mathcal{O}}(n/m \cdot \sqrt{km})$ queries and $\widehat{\mathcal{O}}(n/m \cdot (\sqrt{km} + k^{3.5}))$ time;
- decides whether $\operatorname{Occ}_k^E(P, T) \neq \emptyset$ using $\widehat{\mathcal{O}}(\sqrt{n/m} \cdot \sqrt{km})$ queries and $\widehat{\mathcal{O}}(\sqrt{n/m} \cdot (\sqrt{km} + k^{3.5}))$ time.

> The number of queries is optimal for k = o(m) (up to a subpolynomial factor).

• Structural insights for approximate pattern matching [CKW20].

- Structural insights for approximate pattern matching [CKW20].
- Quantum algorithm for computing bounded edit distance [GJKT24].

- Structural insights for approximate pattern matching [CKW20].
- Quantum algorithm for computing bounded edit distance [GJKT24].
- Quantum Gap Edit Distance algorithm (adapted from [GKKS22]).

- Structural insights for approximate pattern matching [CKW20].
- Quantum algorithm for computing bounded edit distance [GJKT24].
- Quantum Gap Edit Distance algorithm (adapted from [GKKS22]).
- Our communication complexity results.

Thanks!