
Near-Optimal-Time Quantum Algorithms
for Approximate Pattern Matching

Tomasz Kociumaka1 Jakob Nogler2 Philip Wellnitz3

1INSAIT

2ETH Zurich

3National Institute of Informatics, SOKENDAI

1 / 14

Strings and Similarity Measures Between Strings
• A string is a sequence of characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b a a b a a b a a b a a b a a b

a b a a b a a b a a b a a b a a b

S [12]

a b a a b a a b a a b a a b a a b

S [3..10) S [12]

S

• The Hamming distance HD(X ,Y) counts the number of mismatches between X ,Y .

X

Y

b b a a a b b b a b b a a

a b a b a b b b a b b a a

HD(X ,Y) = 2

• The edit distance ED(X ,Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y .

a b a a b a b a b a b b b aX

Y a b a b a b b b a b b a a

×

ED(X ,Y) = 3

Alignment

2 / 14

Strings and Similarity Measures Between Strings
• A string is a sequence of characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b a a b a a b a a b a a b a a b

a b a a b a a b a a b a a b a a b

S [12]

a b a a b a a b a a b a a b a a b

S [3..10) S [12]

S

• The Hamming distance HD(X ,Y) counts the number of mismatches between X ,Y .

X

Y

b b a a a b b b a b b a a

a b a b a b b b a b b a a

HD(X ,Y) = 2

• The edit distance ED(X ,Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y .

a b a a b a b a b a b b b aX

Y a b a b a b b b a b b a a

×

ED(X ,Y) = 3

Alignment

2 / 14

Strings and Similarity Measures Between Strings
• A string is a sequence of characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b a a b a a b a a b a a b a a ba b a a b a a b a a b a a b a a b

S [12]

a b a a b a a b a a b a a b a a b

S [3..10) S [12]

S

• The Hamming distance HD(X ,Y) counts the number of mismatches between X ,Y .

X

Y

b b a a a b b b a b b a a

a b a b a b b b a b b a a

HD(X ,Y) = 2

• The edit distance ED(X ,Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y .

a b a a b a b a b a b b b aX

Y a b a b a b b b a b b a a

×

ED(X ,Y) = 3

Alignment

2 / 14

Strings and Similarity Measures Between Strings
• A string is a sequence of characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b a a b a a b a a b a a b a a ba b a a b a a b a a b a a b a a b

S [12]

a b a a b a a b a a b a a b a a b

S [3..10) S [12]

S

• The Hamming distance HD(X ,Y) counts the number of mismatches between X ,Y .

X

Y

b b a a a b b b a b b a a

a b a b a b b b a b b a a

HD(X ,Y) = 2

• The edit distance ED(X ,Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y .

a b a a b a b a b a b b b aX

Y a b a b a b b b a b b a a

×
ED(X ,Y) = 3

Alignment

2 / 14

Strings and Similarity Measures Between Strings
• A string is a sequence of characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b a a b a a b a a b a a b a a ba b a a b a a b a a b a a b a a b

S [12]

a b a a b a a b a a b a a b a a b

S [3..10) S [12]

S

• The Hamming distance HD(X ,Y) counts the number of mismatches between X ,Y .

X

Y

b b a a a b b b a b b a a

a b a b a b b b a b b a a

HD(X ,Y) = 2

• The edit distance ED(X ,Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y .

a b a a b a b a b a b b b aX

Y a b a b a b b b a b b a a

×

ED(X ,Y) = 3

Alignment
2 / 14

Pattern Matching (PM)

a b a a b a b a b a b b b a b b a a a b b b a b b a aText T , |T | = n

Pattern P, |P| = m a b a b a b b b a b b a a

a b a b a b b b a b b a aa b a b a b b b a b b a a

k = 2

a b a b a b b b a b b a a

×

k = 3

• Exact PM: Compute Occ(P,T) := {x | T [x . . x +m) = P}.

• PM with mismatches: Compute OccHk (P,T) := {x | HD(T [x . . x +m),P) ≤ k}.

• PM with edits: Compute OccEk (P,T) := {x | ∃y ED(T [x . . y),P) ≤ k}.

3 / 14

Pattern Matching (PM)

a b a a b a b a b a b b b a b b a a a b b b a b b a aText T , |T | = n

Pattern P, |P| = m

a b a b a b b b a b b a a

a b a b a b b b a b b a a

a b a b a b b b a b b a a

k = 2

a b a b a b b b a b b a a

×

k = 3

• Exact PM: Compute Occ(P,T) := {x | T [x . . x +m) = P}.

• PM with mismatches: Compute OccHk (P,T) := {x | HD(T [x . . x +m),P) ≤ k}.

• PM with edits: Compute OccEk (P,T) := {x | ∃y ED(T [x . . y),P) ≤ k}.

3 / 14

Pattern Matching (PM)

a b a a b a b a b a b b b a b b a a a b b b a b b a aText T , |T | = n

Pattern P, |P| = m

a b a b a b b b a b b a aa b a b a b b b a b b a a

a b a b a b b b a b b a a

k = 2

a b a b a b b b a b b a a

×

k = 3

• Exact PM: Compute Occ(P,T) := {x | T [x . . x +m) = P}.

• PM with mismatches: Compute OccHk (P,T) := {x | HD(T [x . . x +m),P) ≤ k}.

• PM with edits: Compute OccEk (P,T) := {x | ∃y ED(T [x . . y),P) ≤ k}.

3 / 14

Pattern Matching (PM)

a b a a b a b a b a b b b a b b a a a b b b a b b a aText T , |T | = n

Pattern P, |P| = m

a b a b a b b b a b b a aa b a b a b b b a b b a aa b a b a b b b a b b a a

k = 2

a b a b a b b b a b b a a

×

k = 3

• Exact PM: Compute Occ(P,T) := {x | T [x . . x +m) = P}.

• PM with mismatches: Compute OccHk (P,T) := {x | HD(T [x . . x +m),P) ≤ k}.

• PM with edits: Compute OccEk (P,T) := {x | ∃y ED(T [x . . y),P) ≤ k}.

3 / 14

The Model

We study pattern matching with mismatches/edits in the quantum setting:

• Input strings P/T given as oracle where queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

4 / 14

The Model

We study pattern matching with mismatches/edits in the quantum setting:

• Input strings P/T given as oracle where queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

4 / 14

The Model

We study pattern matching with mismatches/edits in the quantum setting:

• Input strings P/T given as oracle where queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

4 / 14

The Model

We study pattern matching with mismatches/edits in the quantum setting:

• Input strings P/T given as oracle where queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

4 / 14

Length Assumption

We assume n ≤ 3/2 · m.

T

P

Divide T into Θ(n/m) blocks of length n ≤ 3/2 ·m, and apply algorithm on each block.

• To compute OccHk (P,T) (resp. OccEk (P,T)) this incurs a O(n/m) overhead.

• To compute OccHk (P,T) ̸= ∅ (resp. OccHk (P,T) ̸= ∅) incurs a O(
√
n/m) overhead.

5 / 14

Length Assumption

We assume n ≤ 3/2 · m.

T

P

Divide T into Θ(n/m) blocks of length n ≤ 3/2 ·m, and apply algorithm on each block.

• To compute OccHk (P,T) (resp. OccEk (P,T)) this incurs a O(n/m) overhead.

• To compute OccHk (P,T) ̸= ∅ (resp. OccHk (P,T) ̸= ∅) incurs a O(
√

n/m) overhead.

5 / 14

Length Assumption

We assume n ≤ 3/2 · m.

T

P

Divide T into Θ(n/m) blocks of length n ≤ 3/2 ·m, and apply algorithm on each block.

• To compute OccHk (P,T) (resp. OccEk (P,T)) this incurs a O(n/m) overhead.

• To compute OccHk (P,T) ̸= ∅ (resp. OccHk (P,T) ̸= ∅) incurs a O(
√

n/m) overhead.

5 / 14

Length Assumption

We assume n ≤ 3/2 · m.

T

P

Divide T into Θ(n/m) blocks of length n ≤ 3/2 ·m, and apply algorithm on each block.

• To compute OccHk (P,T) (resp. OccEk (P,T)) this incurs a O(n/m) overhead.

• To compute OccHk (P,T) ̸= ∅ (resp. OccHk (P,T) ̸= ∅) incurs a O(
√
n/m) overhead.

5 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches Õ(k2
√
n) Õ(k2

√
n)

[JN23] mismatches Ô(k3/4
√
n) Ô(k

√
n) Only verifies OccHk (P,T) ̸= ∅

This work mismatches Õ(
√
kn) Õ(

√
kn + k2)

[CKW22] edits Õ(k3.5
√
n) Õ(k3.5

√
n)

[KNW24] edits Ô(
√
kn) Ô(

√
kn + k3.5)

This work edits Ô(
√
kn) Ô(

√
kn + k3.5)

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between n-length strings.

• Time complexity is optimal for k ≤ n1/3 for mismatches and for k ≤ n1/6 for edits.

• Offer advantage over classical algorithms for k ≤ n1/4 for mismatches and for k ≤ n1/7 for edits.

6 / 14

Previous Approach

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)

|C | = O(k)

bottleneck

C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

T

P

candidate position x ∈ C

Longest Common Extension Query

Problem: O(k) are too many candidate positions!

7 / 14

Previous Approach

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)

|C | = O(k)

bottleneck

C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

T

P

candidate position x ∈ C

Longest Common Extension Query

Problem: O(k) are too many candidate positions!

7 / 14

Previous Approach

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)

|C | = O(k)

bottleneck

C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

T

P

candidate position x ∈ C

Longest Common Extension Query

Problem: O(k) are too many candidate positions!

7 / 14

Previous Approach

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)

|C | = O(k)

bottleneck

C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

T

P

candidate position x ∈ C

Longest Common Extension Query

Problem: O(k) are too many candidate positions!

7 / 14

Previous Approach

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)

|C | = O(k)

bottleneck

C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

T

P

candidate position x ∈ C

Longest Common Extension Query

Problem: O(k) are too many candidate positions!

7 / 14

Workaround: Communication Complexity

[CKP19]: A subset S ⊆ OccHk (P,T) of size |S | = O(log n) suffices to encode OccHk (P,T).

Q: Can we avoid verifying O(k) candidate positions, and only work with O(log n) candidate
positions?

Theorem [CKP19]

There exists a subset S ⊆ OccHk (P,T) of size |S | = O(log n) such that the mismatch
information for all x ∈ S , defined as

MI(x) := {(i ,P[i],T [x + i]) | i ∈ [0..m) and P[i] ̸= T [x + i]},

provides enough information to construct two strings P# and T# satisfying

OccHk (P,T) = OccHk (P
#,T#).

8 / 14

Workaround: Communication Complexity

[CKP19]: A subset S ⊆ OccHk (P,T) of size |S | = O(log n) suffices to encode OccHk (P,T).

Q: Can we avoid verifying O(k) candidate positions, and only work with O(log n) candidate
positions?

Theorem [CKP19]

There exists a subset S ⊆ OccHk (P,T) of size |S | = O(log n) such that the mismatch
information for all x ∈ S , defined as

MI(x) := {(i ,P[i],T [x + i]) | i ∈ [0..m) and P[i] ̸= T [x + i]},

provides enough information to construct two strings P# and T# satisfying

OccHk (P,T) = OccHk (P
#,T#).

8 / 14

Workaround: Communication Complexity

[CKP19]: A subset S ⊆ OccHk (P,T) of size |S | = O(log n) suffices to encode OccHk (P,T).

Q: Can we avoid verifying O(k) candidate positions, and only work with O(log n) candidate
positions?

Theorem [CKP19]

There exists a subset S ⊆ OccHk (P,T) of size |S | = O(log n) such that the mismatch
information for all x ∈ S , defined as

MI(x) := {(i ,P[i],T [x + i]) | i ∈ [0..m) and P[i] ̸= T [x + i]},

provides enough information to construct two strings P# and T# satisfying

OccHk (P,T) = OccHk (P
#,T#).

8 / 14

Construction of P# and T#

Select a subset {0, n −m} ⊆ S ⊆ OccHk (P,T).

T

P x

x

x

x

x

x

P x

x

x

x

From {MI(x) | x ∈ S} we can infer a set E(S) of equalities of the form:

1. T [i] = σ

2. P[j] = σ′

3. P[x ..x ′) = T [y ..y ′)

Definition

P#,T# are strings of the same length of P,T , and T#[i] = σ, P#[j] = σ′, and P#[j] = T#[i] if and
only if such equalities can be inferred from E(S).

Theorem [CKP19]

For all x ∈ [0..n −m] we have HD(P#,T#[x ..x +m)) ≥ HD(P,T [x ..x +m)).
Moreover, if x divides gcd(S), then equality holds.

By choosing S s.t. gcd(S) = gcd(OccHk (P,T)) we obtain P#,T# s.t. OccHk (P,T) = OccHk (P
#,T#).

9 / 14

Construction of P# and T#

Select a subset {0, n −m} ⊆ S ⊆ OccHk (P,T).

T

P x

x

x

x

x

x

P x

x

x

x

From {MI(x) | x ∈ S} we can infer a set E(S) of equalities of the form:

1. T [i] = σ

2. P[j] = σ′

3. P[x ..x ′) = T [y ..y ′)

Definition

P#,T# are strings of the same length of P,T , and T#[i] = σ, P#[j] = σ′, and P#[j] = T#[i] if and
only if such equalities can be inferred from E(S).

Theorem [CKP19]

For all x ∈ [0..n −m] we have HD(P#,T#[x ..x +m)) ≥ HD(P,T [x ..x +m)).
Moreover, if x divides gcd(S), then equality holds.

By choosing S s.t. gcd(S) = gcd(OccHk (P,T)) we obtain P#,T# s.t. OccHk (P,T) = OccHk (P
#,T#).

9 / 14

Construction of P# and T#

Select a subset {0, n −m} ⊆ S ⊆ OccHk (P,T).

T

P x

x

x

x

x

x

P x

x

x

x

From {MI(x) | x ∈ S} we can infer a set E(S) of equalities of the form:

1. T [i] = σ

2. P[j] = σ′

3. P[x ..x ′) = T [y ..y ′)

Definition

P#,T# are strings of the same length of P,T , and T#[i] = σ, P#[j] = σ′, and P#[j] = T#[i] if and
only if such equalities can be inferred from E(S).

Theorem [CKP19]

For all x ∈ [0..n −m] we have HD(P#,T#[x ..x +m)) ≥ HD(P,T [x ..x +m)).
Moreover, if x divides gcd(S), then equality holds.

By choosing S s.t. gcd(S) = gcd(OccHk (P,T)) we obtain P#,T# s.t. OccHk (P,T) = OccHk (P
#,T#).

9 / 14

Construction of P# and T#

Select a subset {0, n −m} ⊆ S ⊆ OccHk (P,T).

T

P x

x

x

x

x

x

P x

x

x

x

From {MI(x) | x ∈ S} we can infer a set E(S) of equalities of the form:

1. T [i] = σ

2. P[j] = σ′

3. P[x ..x ′) = T [y ..y ′)

Definition

P#,T# are strings of the same length of P,T , and T#[i] = σ, P#[j] = σ′, and P#[j] = T#[i] if and
only if such equalities can be inferred from E(S).

Theorem [CKP19]

For all x ∈ [0..n −m] we have HD(P#,T#[x ..x +m)) ≥ HD(P,T [x ..x +m)).
Moreover, if x divides gcd(S), then equality holds.

By choosing S s.t. gcd(S) = gcd(OccHk (P,T)) we obtain P#,T# s.t. OccHk (P,T) = OccHk (P
#,T#).

9 / 14

Construction of P# and T#

Select a subset {0, n −m} ⊆ S ⊆ OccHk (P,T).

T

P x

x

x

x

x

x

P x

x

x

x

From {MI(x) | x ∈ S} we can infer a set E(S) of equalities of the form:

1. T [i] = σ

2. P[j] = σ′

3. P[x ..x ′) = T [y ..y ′)

Definition

P#,T# are strings of the same length of P,T , and T#[i] = σ, P#[j] = σ′, and P#[j] = T#[i] if and
only if such equalities can be inferred from E(S).

Theorem [CKP19]

For all x ∈ [0..n −m] we have HD(P#,T#[x ..x +m)) ≥ HD(P,T [x ..x +m)).
Moreover, if x divides gcd(S), then equality holds.

By choosing S s.t. gcd(S) = gcd(OccHk (P,T)) we obtain P#,T# s.t. OccHk (P,T) = OccHk (P
#,T#).

9 / 14

Construction of P# and T#

Select a subset {0, n −m} ⊆ S ⊆ OccHk (P,T).

T

P x

x

x

x

x

x

P x

x

x

x

From {MI(x) | x ∈ S} we can infer a set E(S) of equalities of the form:

1. T [i] = σ

2. P[j] = σ′

3. P[x ..x ′) = T [y ..y ′)

Definition

P#,T# are strings of the same length of P,T , and T#[i] = σ, P#[j] = σ′, and P#[j] = T#[i] if and
only if such equalities can be inferred from E(S).

Theorem [CKP19]

For all x ∈ [0..n −m] we have HD(P#,T#[x ..x +m)) ≥ HD(P,T [x ..x +m)).
Moreover, if x divides gcd(S), then equality holds.

By choosing S s.t. gcd(S) = gcd(OccHk (P,T)) we obtain P#,T# s.t. OccHk (P,T) = OccHk (P
#,T#).

9 / 14

Constructing S through a Candidate Set

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

10 / 14

Constructing S through a Candidate Set

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

10 / 14

Constructing S through a Candidate Set

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

10 / 14

Construction of P# and T#

Theorem [KNW25]

Given S and MI(x) for all x ∈ S , we can construct a grammar-like representation P# and T#

of size Õ(k) in time Õ(k2). The grammar supports Õ(1) time PILLAR operations.

• PILLAR operations: longest common prefix, internal pattern matching queries, etc...
• [CKW20]: output (representation of) OccHk (P,T) using O(k2) PILLAR operations.
• This means:

1. We can construct a grammar for P# and T# in Õ(k2) time, and

2. We can compute OccHk (P
#,T#) = OccHk (P,T) in Õ(k2) time.

Theorem [KNW25]

Given N equality equations of the form X [i ..j) = X [i ′..j ′) on a length-n string X , we can
construct in time Õ(N2) a grammar-like representation of size Õ(N) of a strings Y which:

1. satisfies all N equations, and

2. Y [i] = Y [j] only when dictated by the equations.

11 / 14

Construction of P# and T#

Theorem [KNW25]

Given S and MI(x) for all x ∈ S , we can construct a grammar-like representation P# and T#

of size Õ(k) in time Õ(k2). The grammar supports Õ(1) time PILLAR operations.

• PILLAR operations: longest common prefix, internal pattern matching queries, etc...

• [CKW20]: output (representation of) OccHk (P,T) using O(k2) PILLAR operations.
• This means:

1. We can construct a grammar for P# and T# in Õ(k2) time, and

2. We can compute OccHk (P
#,T#) = OccHk (P,T) in Õ(k2) time.

Theorem [KNW25]

Given N equality equations of the form X [i ..j) = X [i ′..j ′) on a length-n string X , we can
construct in time Õ(N2) a grammar-like representation of size Õ(N) of a strings Y which:

1. satisfies all N equations, and

2. Y [i] = Y [j] only when dictated by the equations.

11 / 14

Construction of P# and T#

Theorem [KNW25]

Given S and MI(x) for all x ∈ S , we can construct a grammar-like representation P# and T#

of size Õ(k) in time Õ(k2). The grammar supports Õ(1) time PILLAR operations.

• PILLAR operations: longest common prefix, internal pattern matching queries, etc...
• [CKW20]: output (representation of) OccHk (P,T) using O(k2) PILLAR operations.

• This means:
1. We can construct a grammar for P# and T# in Õ(k2) time, and

2. We can compute OccHk (P
#,T#) = OccHk (P,T) in Õ(k2) time.

Theorem [KNW25]

Given N equality equations of the form X [i ..j) = X [i ′..j ′) on a length-n string X , we can
construct in time Õ(N2) a grammar-like representation of size Õ(N) of a strings Y which:

1. satisfies all N equations, and

2. Y [i] = Y [j] only when dictated by the equations.

11 / 14

Construction of P# and T#

Theorem [KNW25]

Given S and MI(x) for all x ∈ S , we can construct a grammar-like representation P# and T#

of size Õ(k) in time Õ(k2). The grammar supports Õ(1) time PILLAR operations.

• PILLAR operations: longest common prefix, internal pattern matching queries, etc...
• [CKW20]: output (representation of) OccHk (P,T) using O(k2) PILLAR operations.
• This means:

1. We can construct a grammar for P# and T# in Õ(k2) time, and

2. We can compute OccHk (P
#,T#) = OccHk (P,T) in Õ(k2) time.

Theorem [KNW25]

Given N equality equations of the form X [i ..j) = X [i ′..j ′) on a length-n string X , we can
construct in time Õ(N2) a grammar-like representation of size Õ(N) of a strings Y which:

1. satisfies all N equations, and

2. Y [i] = Y [j] only when dictated by the equations.

11 / 14

Construction of P# and T#

Theorem [KNW25]

Given S and MI(x) for all x ∈ S , we can construct a grammar-like representation P# and T#

of size Õ(k) in time Õ(k2). The grammar supports Õ(1) time PILLAR operations.

• PILLAR operations: longest common prefix, internal pattern matching queries, etc...
• [CKW20]: output (representation of) OccHk (P,T) using O(k2) PILLAR operations.
• This means:

1. We can construct a grammar for P# and T# in Õ(k2) time, and

2. We can compute OccHk (P
#,T#) = OccHk (P,T) in Õ(k2) time.

Theorem [KNW25]

Given N equality equations of the form X [i ..j) = X [i ′..j ′) on a length-n string X , we can
construct in time Õ(N2) a grammar-like representation of size Õ(N) of a strings Y which:

1. satisfies all N equations, and

2. Y [i] = Y [j] only when dictated by the equations.

11 / 14

Construction of P# and T#

Theorem [KNW25]

Given S and MI(x) for all x ∈ S , we can construct a grammar-like representation P# and T#

of size Õ(k) in time Õ(k2). The grammar supports Õ(1) time PILLAR operations.

• PILLAR operations: longest common prefix, internal pattern matching queries, etc...
• [CKW20]: output (representation of) OccHk (P,T) using O(k2) PILLAR operations.
• This means:

1. We can construct a grammar for P# and T# in Õ(k2) time, and

2. We can compute OccHk (P
#,T#) = OccHk (P,T) in Õ(k2) time.

Theorem [KNW25]

Given N equality equations of the form X [i ..j) = X [i ′..j ′) on a length-n string X , we can
construct in time Õ(N2) a grammar-like representation of size Õ(N) of a strings Y which:

1. satisfies all N equations, and

2. Y [i] = Y [j] only when dictated by the equations.
11 / 14

Pattern Matching with Edits

The edit case has similar properties to the hamming case:

• [CKW20]: There is a candidate set that either has a small size or can be decomposed in
arithmetic progressions.

• [KNW24]: To encode OccHE (P,T) it suffices to consider a set S of size |S | = O(log n) of k-edit
occurrences + we can translate the encoded information to string equations.

• [KNW24]: Adapt to the quantum setting the classical algorithm from [GKKS22] for the Gap
Edit Distance problem, i.e., distinguish between ED(X ,Y) “small” and ED(X ,Y) “large”.

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

12 / 14

Pattern Matching with Edits

The edit case has similar properties to the hamming case:

• [CKW20]: There is a candidate set that either has a small size or can be decomposed in
arithmetic progressions.

• [KNW24]: To encode OccHE (P,T) it suffices to consider a set S of size |S | = O(log n) of k-edit
occurrences + we can translate the encoded information to string equations.

• [KNW24]: Adapt to the quantum setting the classical algorithm from [GKKS22] for the Gap
Edit Distance problem, i.e., distinguish between ED(X ,Y) “small” and ED(X ,Y) “large”.

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

12 / 14

Pattern Matching with Edits

The edit case has similar properties to the hamming case:

• [CKW20]: There is a candidate set that either has a small size or can be decomposed in
arithmetic progressions.

• [KNW24]: To encode OccHE (P,T) it suffices to consider a set S of size |S | = O(log n) of k-edit
occurrences + we can translate the encoded information to string equations.

• [KNW24]: Adapt to the quantum setting the classical algorithm from [GKKS22] for the Gap
Edit Distance problem, i.e., distinguish between ED(X ,Y) “small” and ED(X ,Y) “large”.

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

12 / 14

Pattern Matching with Edits

The edit case has similar properties to the hamming case:

• [CKW20]: There is a candidate set that either has a small size or can be decomposed in
arithmetic progressions.

• [KNW24]: To encode OccHE (P,T) it suffices to consider a set S of size |S | = O(log n) of k-edit
occurrences + we can translate the encoded information to string equations.

• [KNW24]: Adapt to the quantum setting the classical algorithm from [GKKS22] for the Gap
Edit Distance problem, i.e., distinguish between ED(X ,Y) “small” and ED(X ,Y) “large”.

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

[CKW20]: Find a candidate set OccHk (P,T) ⊆ C in one of two forms.

|C | = O(k)
C forms an arithmetic progres-
sion and C ⊆ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

For each x ∈ C , distinguish between
x ∈ OccHk (P,T) and x /∈ OccH5k(P,T)

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

The set C satisfies OccHk (P,T) ⊆ C ⊆ OccH5k(P,T).
Choose {0, n − m} ⊆ S ⊆ C s.t. gcd(S) = gcd(C) and |S | = O(log n).

Construct compressed P# and T# and compute OccHk (P
#,T#).

12 / 14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the Gap Edit Distance good query complexity but not good time
complexity.

To address this, we consider the following search problem:

• The universe U = [0..n) is partitioned into three sets: U = I+ ∪ I∼ ∪ I−.

• An oracle f : U → {0, 1} is provided with the following properties:

• Pr[f (i) = 1] ≥ 9/10 if i ∈ I+,
• Pr[f (i) = 1] ≤ 1/10 if i ∈ I−,
• No guarantees on Pr[f (i) = 1] if i ∈ I∼.

• The goal is to output an element i ∈ I+ ∪ I∼ or confirm that I+ = ∅.

We give a Õ(
√
n)-time algorithm, adapting the quantum algorithm for bounded-error inputs from

[HMDW03].

13 / 14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the Gap Edit Distance good query complexity but not good time
complexity.

To address this, we consider the following search problem:

• The universe U = [0..n) is partitioned into three sets: U = I+ ∪ I∼ ∪ I−.

• An oracle f : U → {0, 1} is provided with the following properties:

• Pr[f (i) = 1] ≥ 9/10 if i ∈ I+,
• Pr[f (i) = 1] ≤ 1/10 if i ∈ I−,
• No guarantees on Pr[f (i) = 1] if i ∈ I∼.

• The goal is to output an element i ∈ I+ ∪ I∼ or confirm that I+ = ∅.

We give a Õ(
√
n)-time algorithm, adapting the quantum algorithm for bounded-error inputs from

[HMDW03].

13 / 14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the Gap Edit Distance good query complexity but not good time
complexity.

To address this, we consider the following search problem:

• The universe U = [0..n) is partitioned into three sets: U = I+ ∪ I∼ ∪ I−.

• An oracle f : U → {0, 1} is provided with the following properties:

• Pr[f (i) = 1] ≥ 9/10 if i ∈ I+,
• Pr[f (i) = 1] ≤ 1/10 if i ∈ I−,
• No guarantees on Pr[f (i) = 1] if i ∈ I∼.

• The goal is to output an element i ∈ I+ ∪ I∼ or confirm that I+ = ∅.

We give a Õ(
√
n)-time algorithm, adapting the quantum algorithm for bounded-error inputs from

[HMDW03].

13 / 14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the Gap Edit Distance good query complexity but not good time
complexity.

To address this, we consider the following search problem:

• The universe U = [0..n) is partitioned into three sets: U = I+ ∪ I∼ ∪ I−.

• An oracle f : U → {0, 1} is provided with the following properties:

• Pr[f (i) = 1] ≥ 9/10 if i ∈ I+,
• Pr[f (i) = 1] ≤ 1/10 if i ∈ I−,
• No guarantees on Pr[f (i) = 1] if i ∈ I∼.

• The goal is to output an element i ∈ I+ ∪ I∼ or confirm that I+ = ∅.

We give a Õ(
√
n)-time algorithm, adapting the quantum algorithm for bounded-error inputs from

[HMDW03].

13 / 14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the Gap Edit Distance good query complexity but not good time
complexity.

To address this, we consider the following search problem:

• The universe U = [0..n) is partitioned into three sets: U = I+ ∪ I∼ ∪ I−.

• An oracle f : U → {0, 1} is provided with the following properties:

• Pr[f (i) = 1] ≥ 9/10 if i ∈ I+,
• Pr[f (i) = 1] ≤ 1/10 if i ∈ I−,
• No guarantees on Pr[f (i) = 1] if i ∈ I∼.

• The goal is to output an element i ∈ I+ ∪ I∼ or confirm that I+ = ∅.

We give a Õ(
√
n)-time algorithm, adapting the quantum algorithm for bounded-error inputs from

[HMDW03].

13 / 14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the Gap Edit Distance good query complexity but not good time
complexity.

To address this, we consider the following search problem:

• The universe U = [0..n) is partitioned into three sets: U = I+ ∪ I∼ ∪ I−.

• An oracle f : U → {0, 1} is provided with the following properties:

• Pr[f (i) = 1] ≥ 9/10 if i ∈ I+,
• Pr[f (i) = 1] ≤ 1/10 if i ∈ I−,
• No guarantees on Pr[f (i) = 1] if i ∈ I∼.

• The goal is to output an element i ∈ I+ ∪ I∼ or confirm that I+ = ∅.

We give a Õ(
√
n)-time algorithm, adapting the quantum algorithm for bounded-error inputs from

[HMDW03].

13 / 14

Open Questions

• Can we solve N equality equations on a string in time Õ(N)?

• Can we verify whether there is a k-mismatch occurrence in time Õ(
√
kn)?

Thank you!

14 / 14

Open Questions

• Can we solve N equality equations on a string in time Õ(N)?

• Can we verify whether there is a k-mismatch occurrence in time Õ(
√
kn)?

Thank you!

14 / 14

Open Questions

• Can we solve N equality equations on a string in time Õ(N)?

• Can we verify whether there is a k-mismatch occurrence in time Õ(
√
kn)?

Thank you!

14 / 14

Open Questions

• Can we solve N equality equations on a string in time Õ(N)?

• Can we verify whether there is a k-mismatch occurrence in time Õ(
√
kn)?

Thank you!

14 / 14

