Near-Optimal-Time Quantum Algorithms

for Approximate Pattern Matching

Tomasz Kociumaka® Jakob Nogler’ Philip Wellnitz®

LINSAIT
2ETH Zurich

3National Institute of Informatics, SOKENDAI

1/14

Strings and Similarity Measures Between Strings

® A string is a sequence of characters.
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S abaabaabaabaabaahb

2/14

Strings and Similarity Measures Between Strings

® A string is a sequence of characters.
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S abaabaabaabaabaahb

S[12]

2/14

Strings and Similarity Measures Between Strings

® A string is a sequence of characters.
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S abaabaabaabaabaahb

S[3..10) S[12]

2/14

Strings and Similarity Measures Between Strings

® A string is a sequence of characters.
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S abaabaabaabaabaahb
S[3..10) S[12]
® The Hamming distance HD(X, Y') counts the number of mismatches between X, Y.

X b a bbb
b a bbb

baa
\ \ \ HD(X,Y) =2
baa

v —— O
o—p
p—p
v —p
o——o

Y

2/14

Strings and Similarity Measures Between Strings

® A string is a sequence of characters.
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S abaabaabaabaabaahb
S[3..10) S[12]

® The Hamming distance HD(X, Y') counts the number of mismatches between X, Y.
bbaaabbhb
abababbhb

® The edit distance ED(X, Y) measures the minimum number of insertions, deletions, and
substitutions of characters to transform X into Y.

baa
\ \ \ HD(X,Y) =2
baa

v —p
o—0

ababababbba

V0 ons

Pattern Matching (PM)

Text T, |T|=n abaababababbbabbaaabbbabbaa

Pattern P, [Pl=m abababbbabbaa

3/14

Pattern Matching (PM)

Text T, |T|=n abaab abbbabbaa

Pattern P, |[P| =m

¢ Exact PM: Compute Occ(P, T) :={x | T[x..x+ m) = P}.

3/14

Pattern Matching (PM)

Text T, |T|=n abaababababbbabbaaabbbabbaa

k=2

Pattern P, |[P| =m

e Exact PM: Compute Occ(P, T) :={x| T[x..x+ m) = P}.

* PM with mismatches: Compute Occl(P, T) := {x | HD(T[x..x 4+ m),P) < k}.

3/14

Pattern Matching (PM)

Text T, |T|=n Ababababbbabbaaabbbabbaa

NN

Pattern P, |[P| =m babbbabbaa

x~ O

=3

e Exact PM: Compute Occ(P, T) :={x| T[x..x+ m) = P}.
® PM with mismatches: Compute Occ/(P, T) := {x | HD(T[x..x + m), P) < k}.

* PM with edits: Compute OccE(P, T) := {x |3y ED(T[x..y),P) < k}.

3/14

The Model

We study pattern matching with mismatches/edits in the quantum setting:

4/14

The Model

We study pattern matching with mismatches/edits in the quantum setting:

® Input strings P/ T given as oracle where queries can be made in superposition

4/14

The Model

We study pattern matching with mismatches/edits in the quantum setting:

® Input strings P/ T given as oracle where queries can be made in superposition

® Query complexity Q(n): counts number of queries to oracle

4/14

The Model

We study pattern matching with mismatches/edits in the quantum setting:

® Input strings P/ T given as oracle where queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

4/14

Length Assumption

We assume n < 3/2-m.

5/14

Length Assumption

We assume n < 3/2-m.

T |] ’

P i |

Divide T into ©(n/m) blocks of length n < 3/2 - m, and apply algorithm on each block.

5/14

Length Assumption

We assume n < 3/2-m.

T |] ’

P |
Divide T into ©(n/m) blocks of length n < 3/2 - m, and apply algorithm on each block.

® To compute Occl/ (P, T) (resp. OccE (P, T)) this incurs a O(n/m) overhead.

5/14

Length Assumption

We assume n < 3/2-m.

T | - -

P |
Divide T into ©(n/m) blocks of length n < 3/2 - m, and apply algorithm on each block.

® To compute Occl/ (P, T) (resp. OccE (P, T)) this incurs a O(n/m) overhead.
® To compute Occl/ (P, T) # 0 (resp. Occl!(P, T) # 0) incurs a O(/n/m) overhead.

5/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches O(k2\/n) O(k2\/n)

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes
[CKW20] mismatches O(k2\/n) O(k2\/n)
[IN23] mismatches O(K3/4\/n) O(ky/n) Only verifies Occl/(P, T) # 0

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches O(k2\/n) O(k2\/n)
[IN23] mismatches O(K3/4\/n) O(ky/n) Only verifies Occl/(P, T) # 0
This work mismatches O(Vkn) O(Vkn + k)

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches O(k2\/n) O(k2\/n)

[IN23] mismatches O(K3/4\/n) O(ky/n) Only verifies Occl/(P, T) # 0
This work mismatches O(Vkn) O(Vkn + k)
[CKW22] edits O(k35/n) O(k35,/n)

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes
[CKW20] mismatches O(k2\/n) O(k2\/n)
[IN23] mismatches O(K3/4\/n) O(ky/n) Only verifies Occl/(P, T) # 0
This work mismatches O(Vkn) O(Vkn + k)
[CKW22] edits O(k35/n) O(k35,/n)
[KNW24] edits O(vkn) O(Vkn + k%)

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches O(k2\/n) O(k2\/n)
[IN23] mismatches O(K3/4\/n) O(ky/n) Only verifies Occl/(P, T) # 0
This work mismatches O(Vkn) O(Vkn + k)
[CKW22] edits O(k35/n) O(k35,/n)
[KNW24] edits O(vkn) O(Vkn + k%)
This work edits O(Vkn) OWkn + k3%)

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches O(k2\/n) O(k2\/n)
[IN23] mismatches O(K3/4\/n) O(ky/n) Only verifies Occl/(P, T) # 0
This work mismatches O(Vkn) O(Vkn + k)
[CKW22] edits O(k35/n) O(k35,/n)
[KNW24] edits O(vkn) O(Vkn + k%)
This work edits O(Vkn) OWkn + k3%)

® Query complexity is optimal for k = o(n).

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches O(k2\/n) O(k2\/n)
[IN23] mismatches O(K3/4\/n) O(ky/n) Only verifies Occl/(P, T) # 0
This work mismatches O(Vkn) O(Vkn + k)
[CKW22] edits O(k35/n) O(k35,/n)
[KNW24] edits O(vkn) O(Vkn + k%)
This work edits O(Vkn) OWkn + k3%)

® Query complexity is optimal for k = o(n).

® \We need the same query complexity to compute HD/ED between n-length strings.

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes
[CKW20] mismatches O(k2\/n) O(k2\/n)
[JN23] mismatches O(K3/4/n) O(ky/n) Only verifies Occf/(P, T) # 0
This work mismatches O(Vkn) O(Vkn + k)
[CKW22] edits O(k35/n) O(k35,/n)
[KNW24] edits O(vkn) O(Vkn + k%)
This work edits O(Vkn) O(Vkn + k35)

® Query complexity is optimal for k = o(n).

® \We need the same query complexity to compute HD/ED between n-length strings.

e Time complexity is optimal for k < n'/3 for mismatches and for k < n'/® for edits.

6/14

Our Results

Refererence Setting Query Complexity Time Complexity Notes

[CKW20] mismatches O(k2\/n) O(k?\/n)
[JN23] mismatches O(K3/4/n) O(ky/n) Only verifies Occf/(P, T) # 0
This work mismatches O(Vkn) O(Vkn + k)
[CKW22] edits O(k35/n) O(k35,/n)
[KNW24] edits O(vkn) O(Vkn + k%)
This work edits O(Vkn) O(Vkn + k35)

® Query complexity is optimal for k = o(n).
® \We need the same query complexity to compute HD/ED between n-length strings.
e Time complexity is optimal for k < n'/3 for mismatches and for k < n'/® for edits.

e Offer advantage over classical algorithms for k < n'/# for mismatches and for k < n/7 for edits.

6/14

Previous Approach

[[CKWZO]: Find a candidate set Occl/(P, T) C C in one of two forms.]
| 1

[C forms an arithmetic progres- }

|C| = O(k) sion and C C Occgk(P’ T)

7/14

Previous Approach

[[CKWZO]: Find a candidate set Occl/(P, T) C C in one of two forms.]
|
C forms an arithmetic progres-
sion and C C Occkh (P, T)

1€l = O(k)

bottleneck

candidate position x € C
|
T | j I
P | :

7/14

Previous Approach

[[CKWZO]: Find a candidate set Occl/(P, T) C C in one of two forms.]
|
C forms an arithmetic progres-
sion and C C Occkh (P, T)

1€l = O(k)

bottleneck

candidate position x € C
|

P

Longest Common Extension Query

X X

7/14

Previous Approach

[[CKWZO]: Find a candidate set Occl/(P, T) C C in one of two forms.]
|
C forms an arithmetic progres-
sion and C C Occkh (P, T)

1€l = O(k)

bottleneck

candidate position x € C
|

P

Longest Common Extension Query

X X
X X

7/14

Previous Approach

[[CKWZO]: Find a candidate set Occl/(P, T) C C in one of two forms.]
|
C forms an arithmetic progres-
sion and C C Occkh (P, T)

1€l = O(k)

bottleneck

candidate position x € C
|

P

Longest Common Extension Query

X X
X X

Problem: O(k) are too many candidate positions!

7/14

Workaround: Communication Complexity

[CKP19]: A subset S C Occl/ (P, T) of size |S| = O(log n) suffices to encode Occl (P, T).

8/14

Workaround: Communication Complexity

[CKP19]: A subset S C Occl/ (P, T) of size |S| = O(log n) suffices to encode Occl (P, T).

Q: Can we avoid verifying O(k) candidate positions, and only work with O(log n) candidate
positions?

8/14

Workaround: Communication Complexity

[CKP19]: A subset S C Occl/(P, T) of size |S| = O(log n) suffices to encode Occl (P, T).

Q: Can we avoid verifying O(k) candidate positions, and only work with O(log n) candidate
positions?

[CKP19]

There exists a subset S C Occl (P, T) of size |S| = O(log n) such that the mismatch
information for all x € S, defined as

MI(x) = {(i, P[i], T[x +]) | i € [0..m) and P[i] # T[x +]},

provides enough information to construct two strings P# and T7 satisfying

Occl (P, T) = Occll (P*, T#).

8/14

Construction of P# and T7

Select a subset {0,n — m} C S C Occl(P, T).

9/14

Construction of P# and T7

Select a subset {0,n — m} C S C Occl(P, T).

From {MI(x) | x € S} we can infer a set £(S) of equalities of the form:
Py 1 Tli]l=0

_ , 2. Pljl=0'

9/14

Construction of P# and T7

Select a subset {0,n — m} C S C Occl(P, T).

From {MI(x) | x € S} we can infer a set £(S) of equalities of the form:

P | 1. T[I] =0
_ , 2. Pljl=0'
- : 3. Plx.x")=Tly..y")

9/14

Construction of P# and T7

Select a subset {0,n — m} C S C Occl(P, T).
From {MI(x) | x € S} we can infer a set £(S) of equalities of the form:

1. Tlil=0¢
2. Pljl=o
3. Plx.x")=Tly..y")

Definition
P#, T# are strings of the same length of P, T, and T#[i] = o, P#[j] = ¢/, and P#[j] = T#[i] if and
only if such equalities can be inferred from £(S).

9/14

Construction of P# and T7

Select a subset {0,n—m} C S C OcckH(P, T).
From {MI(x) | x € S} we can infer a set £(S) of equalities of the form:

P L1 Tll=0
_ 2. Pljl=o
- 3. Plx.x")=Tly..y")
Definition

P#, T# are strings of the same length of P, T, and T#[i] = o, P#[j] = ¢/, and P#[j] = T#[i] if and
only if such equalities can be inferred from £(S).

[CKP19]

For all x € [0..n — m] we have HD(P#, T#[x..x + m)) > HD(P, T[x..x + m)).
Moreover, if x divides ged(S), then equality holds.

9/14

Construction of P# and T7

Select a subset {0,n — m} C S C Occl(P, T).
From {MI(x) | x € S} we can infer a set £(S) of equalities of the form:

P L1 Tll=0
_ 2. Pljl=o
- 3. Plx.x")=Tly..y")
Definition

P#, T# are strings of the same length of P, T, and T#[i] = o, P#[j] = ¢/, and P#[j] = T#[i] if and
only if such equalities can be inferred from £(S).

[CKP19]

For all x € [0..n — m] we have HD(P#, T#[x..x + m)) > HD(P, T[x..x + m)).
Moreover, if x divides ged(S), then equality holds.

By choosing S s.t. gcd(S) = ged(Occl (P, T)) we obtain P# T# st. Occl (P, T) = Occl(P#, T#).

9/14

Constructing S through a Candidate Set

[[CKW20]: Find a candidate set Occt/(P, T) C C in one of two forms.]
|
— C forms an arithmetic progres-
€= O(k) [sion and C C Occkh (P, T)]

10/14

Constructing S through a Candidate Set

[[CKW20]: Find a candidate set Occt/(P, T) C C in one of two forms.]
|
— C forms an arithmetic progres-
@O(k) [sion and C C Occkh (P, T)]

{ For each x € C, distinguish between }

x € Occl(P, T) and x ¢ Occhl (P, T)

10/14

Constructing S through a Candidate Set

[[CKW20]: Find a candidate set Occt/(P, T) C C in one of two forms. J

|
— C forms an arithmetic progres-
@O(k) [sion and C C Occkh (P, T)]
For each x € C, distinguish between
x € Occl(P, T) and x ¢ Occhl (P, T)
|
1
The set C satisfies Occl/(P, T) € C C Occll (P, T).
Choose {0,n — m} C S C C s.t. gcd(S) = ged(C) and |S| = O(log n).

|

[Construct compressed P# and T# and compute Occl (P#, T#). J

10/14

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

11/14

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...

11/14

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...
e [CKW20]: output (representation of) Occl!(P, T) using O(k?) PILLAR operations.

11/14

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...
e [CKW20]: output (representation of) Occl!(P, T) using O(k?) PILLAR operations.
® This means: B

1. We can construct a grammar for P# and T# in O(k?) time, and

11/14

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...
e [CKW20]: output (representation of) Occl!(P, T) using O(k?) PILLAR operations.
® This means: B

1. We can construct a grammar for P# and T# in O(k?) time, and

2. We can compute Occl (P#, T#) = Occl (P, T) in O(k?) time.

11/14

Construction of P# and T7

[KNW25]

Given S and MI(x) for all x € S, we can construct a grammar-like representation P# and T#
of size O(k) in time O(k?). The grammar supports O(1) time PILLAR operations.

® PILLAR operations: longest common prefix, internal pattern matching queries, etc...
e [CKW20]: output (representation of) Occl!(P, T) using O(k?) PILLAR operations.
® This means: _

1. We can construct a grammar for P# and T# in O(k?) time, and

2. We can compute Occl (P#, T#) = Occl (P, T) in O(k?) time.
[KNW25]
Given N equality equations of the form X[i..j) = X[i’..j) on a length-n string X, we can
construct in time O(N2) a grammar-like representation of size O(N) of a strings Y which:
1. satisfies all N equations, and

2. Y[i] = Y[j] only when dictated by the equations.

<

Pattern Matching with Edits

The edit case has similar properties to the hamming case:

[[CKWZO]: Find a candidate set Occl/(P, T) C C in one of two forms.]
T

]

C forms an arithmetic progres-
sion and C C Occll(P, T)

IC| = O(k)

x € Occl (P, T) and x ¢ Occh(P, T)

[For each x € C, distinguish between]

!
The set C satisfies Occl/ (P, T) C C C Occl (P, T).
Choose {0,n — m} € S C Cs.t. ged(S) = ged(C) and |S| = O(log).

[Construct compressed P# and T# and compute Occfl (P#, T#).]

12/14

Pattern Matching with Edits

The edit case has similar properties to the hamming case:

® [CKW20]: There is a candidate set that either has a small size or can be decomposed in
arithmetic progressions.

[[CKWZO]. Find a candidate set Occ{(P, T) C C in one of two forms.]
T
C forms an arithmetic progres-
sion and C C Occll(P, T)

i<l = 0(k)

For each x € C, distinguish between
x € Occl (P, T) and x ¢ Occh(P, T)

!
The set C satisfies Occl/ (P, T) C C C Occl (P, T).
Choose {0,n — m} € S C Cs.t. ged(S) = ged(C) and |S| = O(log).

[Construct compressed P# and T# and compute Occfl (P#, T#).]

12/14

Pattern Matching with Edits

The edit case has similar properties to the hamming case:

® [CKW20]: There is a candidate set that either has a small size or can be decomposed in
arithmetic progressions.

e [KNW24]: To encode Occf(P, T) it suffices to consider a set S of size |S| = O(log n) of k-edit
occurrences + we can translate the encoded information to string equations.

[[CKWZO]: Find a candidate set Occl/(P, T) C C in one of two forms.]
T

]

[C forms an arithmetic progres-]

I€l = o(k) sion and C C Occll(P, T)

For each x € C, distinguish between
x € Occl (P, T) and x ¢ Occh(P, T)

The set C satisfies Occf(P,T) € C C Occth(P, T).
Choose {0,n—m} € S C Cs.t. ged(S) = ged(C) and |S| = O(log n).

[Construct compressed P# and T# and compute Occl (P#, T#).]

12/14

Pattern Matching with Edits

The edit case has similar properties to the hamming case:

® [CKW20]: There is a candidate set that either has a small size or can be decomposed in
arithmetic progressions.

e [KNW24]: To encode Occf(P, T) it suffices to consider a set S of size |S| = O(log n) of k-edit
occurrences + we can translate the encoded information to string equations.

® [KNW24]: Adapt to the quantum setting the classical algorithm from [GKKS22] for the GAP
EDIT DISTANCE problem, i.e., distinguish between ED(X, Y) “small” and ED(X, Y) “large”.

[[CKWZO]: Find a candidate set Occl/(P, T) C C in one of two forms.]
T

]

C forms an arithmetic progres-
sion and C C Occll(P, T)

IC| = O(k)

For each x € C, distinguish between
x € Occf/(P,T) and x ¢ Occhi (P, T)

!
The set C satisfies Occl/ (P, T) C C C Occh (P, T).
Choose {0,n — m} € S C Cs.t. ged(S) = ged(C) and |S| = O(log).

[Construct compressed P# and T# and compute Occfl (P#, T#).]

12/14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the GAP EDIT DISTANCE good query complexity but not good time
complexity.

13/14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the GAP EDIT DISTANCE good query complexity but not good time
complexity.

To address this, we consider the following search problem:

13/14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the GAP EDIT DISTANCE good query complexity but not good time
complexity.

To address this, we consider the following search problem:

® The universe U = [0..n) is partitioned into three sets: U=/t U/~ U/I~.

13/14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the GAP EDIT DISTANCE good query complexity but not good time
complexity.

To address this, we consider the following search problem:

® The universe U = [0..n) is partitioned into three sets: U=/t U/~ U/I~.

® An oracle f : U — {0,1} is provided with the following properties:
® Pr[f(i)=1]>9/10if i € IT,
e Prif(i)=1]<1/10ifie I,
® No guarantees on Pr[f(i) =1] if i € [™.

13/14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the GAP EDIT DISTANCE good query complexity but not good time
complexity.

To address this, we consider the following search problem:

® The universe U = [0..n) is partitioned into three sets: U=/t U/~ U/I~.

® An oracle f : U — {0,1} is provided with the following properties:
® Pr[f(i)=1]>9/10if i € IT,
e Prif(i)=1]<1/10ifie I,
® No guarantees on Pr[f(i) =1] if i € [™.

® The goal is to output an element i € /™ U /™ or confirm that /T = (.

13/14

Search on Bounded-Error and Neutral Inputs

The quantum algorithm for the GAP EDIT DISTANCE good query complexity but not good time
complexity.

To address this, we consider the following search problem:

® The universe U = [0..n) is partitioned into three sets: U=/t U/~ U/I~.

® An oracle f : U — {0,1} is provided with the following properties:
® Pr[f(i)=1]>9/10if i € IT,
e Prif(i)=1]<1/10ifie I,
® No guarantees on Pr[f(i) =1] if i € [™.

® The goal is to output an element i € /™ U /™ or confirm that /T = (.

We give a (5(ﬁ)—time algorithm, adapting the quantum algorithm for bounded-error inputs from
[HMDWO03].

13/14

Open Questions

14/14

Open Questions

e Can we solve N equality equations on a string in time O(N)?

14/14

Open Questions

e Can we solve N equality equations on a string in time O(N)?

® Can we verify whether there is a k-mismatch occurrence in time (5(\/ kn)?

14/14

Open Questions

e Can we solve N equality equations on a string in time O(N)?

® Can we verify whether there is a k-mismatch occurrence in time (5(\/ kn)?

Thank you!

14/14

