Near-Optimal-Time Quantum Algorithms for Approximate Pattern Matching

Tomasz Kociumaka¹ Jakob Nogler² Philip Wellnitz³

 1 INSAIT

²ETH Zurich

³National Institute of Informatics, SOKENDAI

• A *string* is a sequence of characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 S a b a a b a a b a a b a a b a a b a a b

• A string is a sequence of characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 S abaabaabaabaabaabaab S[12]

• A string is a sequence of characters.

S a b a a b

• A string is a sequence of characters.

S a b a a b a a b a a b a a b a a b a a b S[3..10) S[12]

• The Hamming distance HD(X, Y) counts the number of mismatches between X, Y.

• A *string* is a sequence of characters.

S a b a a b a a b a a b a a b a a b a a b S [3..10) S[12]

• The Hamming distance HD(X, Y) counts the number of mismatches between X, Y.

• The *edit distance* ED(X, Y) measures the minimum number of insertions, deletions, and substitutions of characters to transform X into Y.

3

Text T, |T| = n abaababababbbabbabbaabbbabbaabbaa

Pattern P, |P| = m a b a b a b b b a b b a a

• **Exact PM:** Compute $Occ(P, T) := \{x \mid T[x . . x + m) = P\}.$

- **Exact PM:** Compute $Occ(P, T) := \{x \mid T[x \dots x + m) = P\}.$
- **PM** with mismatches: Compute $Occ_k^H(P, T) := \{x \mid HD(T[x \cdot \cdot x + m), P) \le k\}$.

Text
$$T$$
, $|T| = n$
Pattern P , $|P| = m$
a b a b a b a b a b b b a b b b a b b b a b b b a b b b a b b a b b a b b a b b a b b a b b

- **Exact PM:** Compute $Occ(P, T) := \{x \mid T[x ... x + m] = P\}.$
- **PM with mismatches:** Compute $Occ_k^H(P, T) := \{x \mid HD(T[x \dots x + m), P) \le k\}.$
- **PM with edits:** Compute $Occ_k^E(P, T) := \{x \mid \exists y ED(T[x \dots y), P) \le k\}$.

• Input strings P/T given as oracle where queries can be made in superposition

- Input strings P/T given as oracle where queries can be made in superposition
- Query complexity Q(n): counts number of queries to oracle

- Input strings P/T given as oracle where queries can be made in superposition
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

We assume $n \leq 3/2 \cdot m$.

We assume $n \leq 3/2 \cdot m$.

Divide T into $\Theta(n/m)$ blocks of length $n \leq 3/2 \cdot m$, and apply algorithm on each block.

We assume $n \leq 3/2 \cdot m$.

Divide T into $\Theta(n/m)$ blocks of length $n \leq 3/2 \cdot m$, and apply algorithm on each block.

• To compute $\operatorname{Occ}_k^H(P, T)$ (resp. $\operatorname{Occ}_k^E(P, T)$) this incurs a $\mathcal{O}(n/m)$ overhead.

We assume $n \leq 3/2 \cdot m$.

Divide T into $\Theta(n/m)$ blocks of length $n \leq 3/2 \cdot m$, and apply algorithm on each block.

- To compute $\operatorname{Occ}_k^H(P, T)$ (resp. $\operatorname{Occ}_k^E(P, T)$) this incurs a $\mathcal{O}(n/m)$ overhead.
- To compute $\operatorname{Occ}_k^H(P, T) \neq \emptyset$ (resp. $\operatorname{Occ}_k^H(P, T) \neq \emptyset$) incurs a $\mathcal{O}(\sqrt{n/m})$ overhead.

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $\operatorname{Occ}_k^H(P,T) \neq \emptyset$

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $Occ^H_k(P, T) \neq \emptyset$
This work	mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $\operatorname{Occ}_k^H(P, T) \neq \emptyset$
This work	mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	
[CKW22]	edits	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $Occ^{H}_k(P,T) eq \emptyset$
This work	mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	
[CKW22]	edits	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	
[KNW24]	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $Occ^H_k(P, T) \neq \emptyset$
This work	mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	
[CKW22]	edits	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	
[KNW24]	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	
This work	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{kn}+k^{3.5})$	

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $\operatorname{Occ}_k^H(P, T) \neq \emptyset$
This work	mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	
[CKW22]	edits	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	
[KNW24]	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	
This work	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{kn}+k^{3.5})$	

• Query complexity is optimal for k = o(n).

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $Occ^H_k(P, T) \neq \emptyset$
This work	mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	
[CKW22]	edits	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	
[KNW24]	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	
This work	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{kn}+k^{3.5})$	

• Query complexity is optimal for k = o(n).

• We need the same query complexity to compute HD/ED between *n*-length strings.

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $\operatorname{Occ}_k^H(P,T) eq \emptyset$
This work	mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	
[CKW22]	edits	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	
[KNW24]	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	
This work	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{kn}+k^{3.5})$	

• Query complexity is optimal for k = o(n).

- We need the same query complexity to compute HD/ED between *n*-length strings.
- Time complexity is optimal for $k \le n^{1/3}$ for mismatches and for $k \le n^{1/6}$ for edits.

Refererence	Setting	Query Complexity	Time Complexity	Notes
[CKW20]	mismatches	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	$\widetilde{\mathcal{O}}(k^2\sqrt{n})$	
[JN23]	mismatches	$\widehat{\mathcal{O}}(k^{3/4}\sqrt{n})$	$\widehat{\mathcal{O}}(k\sqrt{n})$	Only verifies $\operatorname{Occ}_k^H(P,T) eq \emptyset$
This work	mismatches	$\widetilde{\mathcal{O}}(\sqrt{kn})$	$\widetilde{\mathcal{O}}(\sqrt{kn}+k^2)$	
[CKW22]	edits	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	$\widetilde{\mathcal{O}}(k^{3.5}\sqrt{n})$	
[KNW24]	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{k}n+k^{3.5})$	
This work	edits	$\widehat{\mathcal{O}}(\sqrt{kn})$	$\widehat{\mathcal{O}}(\sqrt{kn}+k^{3.5})$	

- Query complexity is optimal for k = o(n).
- We need the same query complexity to compute HD/ED between *n*-length strings.
- Time complexity is optimal for $k \le n^{1/3}$ for mismatches and for $k \le n^{1/6}$ for edits.
- Offer advantage over classical algorithms for $k \le n^{1/4}$ for mismatches and for $k \le n^{1/7}$ for edits.

Problem: O(k) are too many candidate positions!

Workaround: Communication Complexity

[CKP19]: A subset $S \subseteq \operatorname{Occ}_k^H(P, T)$ of size $|S| = \mathcal{O}(\log n)$ suffices to encode $\operatorname{Occ}_k^H(P, T)$.

Workaround: Communication Complexity

[CKP19]: A subset $S \subseteq \operatorname{Occ}_k^H(P, T)$ of size $|S| = \mathcal{O}(\log n)$ suffices to encode $\operatorname{Occ}_k^H(P, T)$.

Q: Can we avoid verifying $\mathcal{O}(k)$ candidate positions, and only work with $\mathcal{O}(\log n)$ candidate positions?

Workaround: Communication Complexity

[CKP19]: A subset $S \subseteq \operatorname{Occ}_k^H(P, T)$ of size $|S| = \mathcal{O}(\log n)$ suffices to encode $\operatorname{Occ}_k^H(P, T)$.

Q: Can we avoid verifying $\mathcal{O}(k)$ candidate positions, and only work with $\mathcal{O}(\log n)$ candidate positions?

Theorem [CKP19]

There exists a subset $S \subseteq \operatorname{Occ}_k^H(P, T)$ of size $|S| = \mathcal{O}(\log n)$ such that the mismatch information for all $x \in S$, defined as

 $MI(x) := \{(i, P[i], T[x+i]) \mid i \in [0..m) \text{ and } P[i] \neq T[x+i]\},\$

provides enough information to construct two strings $P^{\#}$ and $T^{\#}$ satisfying

 $\operatorname{Occ}_{k}^{H}(P, T) = \operatorname{Occ}_{k}^{H}(P^{\#}, T^{\#}).$

Select a subset $\{0, n - m\} \subseteq S \subseteq \operatorname{Occ}_{k}^{H}(P, T)$.

Select a subset $\{0, n - m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$.

From ${MI(x) | x \in S}$ we can infer a set $\mathcal{E}(S)$ of equalities of the form:

Select a subset $\{0, n - m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$.

From ${MI(x) | x \in S}$ we can infer a set $\mathcal{E}(S)$ of equalities of the form:

$$T[i] = \sigma$$

$$P[j] = \sigma'$$

$$P[x..x') = T[y..y')$$

Select a subset $\{0, n - m\} \subseteq S \subseteq Occ_k^H(P, T)$.

From ${MI(x) | x \in S}$ we can infer a set $\mathcal{E}(S)$ of equalities of the form:

Definition

 $P^{\#}, T^{\#}$ are strings of the same length of P, T, and $T^{\#}[i] = \sigma, P^{\#}[j] = \sigma'$, and $P^{\#}[j] = T^{\#}[i]$ if and only if such equalities can be inferred from $\mathcal{E}(S)$.

Select a subset $\{0, n - m\} \subseteq S \subseteq Occ_k^H(P, T)$.

From ${MI(x) | x \in S}$ we can infer a set $\mathcal{E}(S)$ of equalities of the form:

Definition

 $P^{\#}, T^{\#}$ are strings of the same length of P, T, and $T^{\#}[i] = \sigma, P^{\#}[j] = \sigma'$, and $P^{\#}[j] = T^{\#}[i]$ if and only if such equalities can be inferred from $\mathcal{E}(S)$.

Theorem [CKP19]

For all $x \in [0..n - m]$ we have HD($P^{\#}$, $T^{\#}[x..x + m)$) \geq HD(P, T[x..x + m)). Moreover, if x divides gcd(S), then equality holds.

Select a subset $\{0, n - m\} \subseteq S \subseteq \operatorname{Occ}_k^H(P, T)$.

From ${MI(x) | x \in S}$ we can infer a set $\mathcal{E}(S)$ of equalities of the form:

1. $T[I] = \sigma$ 2. $P[j] = \sigma'$ 3. P[x..x') = T[y..y')

Definition

 $P^{\#}$, $T^{\#}$ are strings of the same length of P, T, and $T^{\#}[i] = \sigma$, $P^{\#}[j] = \sigma'$, and $P^{\#}[j] = T^{\#}[i]$ if and only if such equalities can be inferred from $\mathcal{E}(S)$.

Theorem [CKP19]

For all $x \in [0..n - m]$ we have HD($P^{\#}$, $T^{\#}[x..x + m)$) \geq HD(P, T[x..x + m)). Moreover, if x divides gcd(S), then equality holds.

By choosing S s.t. $gcd(S) = gcd(Occ_k^H(P, T))$ we obtain $P^{\#}, T^{\#}$ s.t. $Occ_k^H(P, T) = Occ_k^H(P^{\#}, T^{\#})$.

Constructing *S* through a Candidate Set

Constructing *S* through a Candidate Set

Constructing *S* through a Candidate Set

Theorem [KNW25]

Theorem [KNW25]

Given S and MI(x) for all $x \in S$, we can construct a grammar-like representation $P^{\#}$ and $T^{\#}$ of size $\widetilde{\mathcal{O}}(k)$ in time $\widetilde{\mathcal{O}}(k^2)$. The grammar supports $\widetilde{\mathcal{O}}(1)$ time PILLAR operations.

• PILLAR operations: longest common prefix, internal pattern matching queries, etc...

Theorem [KNW25]

- PILLAR operations: longest common prefix, internal pattern matching queries, etc...
- [CKW20]: output (representation of) $\operatorname{Occ}_k^H(P, T)$ using $\mathcal{O}(k^2)$ PILLAR operations.

Theorem [KNW25]

- PILLAR operations: longest common prefix, internal pattern matching queries, etc...
- [CKW20]: output (representation of) $\operatorname{Occ}_k^H(P, T)$ using $\mathcal{O}(k^2)$ PILLAR operations.
- This means:
 - 1. We can construct a grammar for $P^{\#}$ and $T^{\#}$ in $\widetilde{\mathcal{O}}(k^2)$ time, and

Theorem [KNW25]

- PILLAR operations: longest common prefix, internal pattern matching queries, etc...
- [CKW20]: output (representation of) $\operatorname{Occ}_k^H(P, T)$ using $\mathcal{O}(k^2)$ PILLAR operations.
- This means:
 - 1. We can construct a grammar for $P^{\#}$ and $\mathcal{T}^{\#}$ in $\widetilde{\mathcal{O}}(k^2)$ time, and
 - 2. We can compute $\operatorname{Occ}_k^H(P^\#, T^\#) = \operatorname{Occ}_k^H(P, T)$ in $\widetilde{\mathcal{O}}(k^2)$ time.

Theorem [KNW25]

Given S and MI(x) for all $x \in S$, we can construct a grammar-like representation $P^{\#}$ and $T^{\#}$ of size $\widetilde{\mathcal{O}}(k)$ in time $\widetilde{\mathcal{O}}(k^2)$. The grammar supports $\widetilde{\mathcal{O}}(1)$ time PILLAR operations.

- PILLAR operations: longest common prefix, internal pattern matching queries, etc...
- [CKW20]: output (representation of) $\operatorname{Occ}_k^H(P, T)$ using $\mathcal{O}(k^2)$ PILLAR operations.
- This means:
 - 1. We can construct a grammar for $P^{\#}$ and $T^{\#}$ in $\widetilde{\mathcal{O}}(k^2)$ time, and
 - 2. We can compute $\operatorname{Occ}_k^H(P^{\#}, T^{\#}) = \operatorname{Occ}_k^H(P, T)$ in $\widetilde{\mathcal{O}}(k^2)$ time.

Theorem [KNW25]

Given N equality equations of the form X[i..j) = X[i'..j') on a length-*n* string X, we can construct in time $\widetilde{\mathcal{O}}(N^2)$ a grammar-like representation of size $\widetilde{\mathcal{O}}(N)$ of a strings Y which:

- 1. satisfies all N equations, and
- 2. Y[i] = Y[j] only when dictated by the equations.

The edit case has similar properties to the hamming case:

The edit case has similar properties to the hamming case:

• [CKW20]: There is a candidate set that either has a small size or can be decomposed in arithmetic progressions.

The edit case has similar properties to the hamming case:

- [CKW20]: There is a candidate set that either has a small size or can be decomposed in arithmetic progressions.
- [KNW24]: To encode Occ^H_E(P, T) it suffices to consider a set S of size |S| = O(log n) of k-edit occurrences + we can translate the encoded information to string equations.

The edit case has similar properties to the hamming case:

- [CKW20]: There is a candidate set that either has a small size or can be decomposed in arithmetic progressions.
- [KNW24]: To encode $Occ_E^H(P, T)$ it suffices to consider a set S of size $|S| = O(\log n)$ of k-edit occurrences + we can translate the encoded information to string equations.
- [KNW24]: Adapt to the quantum setting the classical algorithm from [GKKS22] for the GAP EDIT DISTANCE problem, i.e., distinguish between ED(X, Y) "small" and ED(X, Y) "large".

The quantum algorithm for the ${\rm GAP}\ {\rm EDIT}\ {\rm DISTANCE}$ good query complexity but not good time complexity.

The quantum algorithm for the ${\rm GAP}\ {\rm EDIT}\ {\rm DISTANCE}$ good query complexity but not good time complexity.

To address this, we consider the following search problem:

The quantum algorithm for the ${\rm GAP}\ {\rm EDIT}\ {\rm DISTANCE}\ {\rm good}\ {\rm query}\ {\rm complexity}\ {\rm but}\ {\rm not}\ {\rm good}\ {\rm time}\ {\rm complexity}.$

To address this, we consider the following search problem:

• The universe U = [0..n) is partitioned into three sets: $U = I^+ \cup I^- \cup I^-$.

The quantum algorithm for the ${\rm GAP}\ {\rm EDIT}\ {\rm DISTANCE}$ good query complexity but not good time complexity.

To address this, we consider the following search problem:

- The universe U = [0..n) is partitioned into three sets: $U = I^+ \cup I^- \cup I^-$.
- An oracle $f: U \to \{0, 1\}$ is provided with the following properties:

•
$$\Pr[f(i) = 1] \ge 9/10$$
 if $i \in I^+$,

- $\Pr[f(i) = 1] \le 1/10$ if $i \in I^-$,
- No guarantees on $\Pr[f(i) = 1]$ if $i \in I^{\sim}$.

The quantum algorithm for the ${\rm GAP}\ {\rm EDIT}\ {\rm DISTANCE}$ good query complexity but not good time complexity.

To address this, we consider the following search problem:

- The universe U = [0..n) is partitioned into three sets: $U = I^+ \cup I^- \cup I^-$.
- An oracle $f: U \to \{0, 1\}$ is provided with the following properties:

•
$$\Pr[f(i) = 1] \ge 9/10$$
 if $i \in I^+$,

- $\Pr[f(i) = 1] \le 1/10$ if $i \in I^-$,
- No guarantees on $\Pr[f(i) = 1]$ if $i \in I^{\sim}$.
- The goal is to output an element $i \in I^+ \cup I^\sim$ or confirm that $I^+ = \emptyset$.

The quantum algorithm for the ${\rm GAP}\ {\rm EDIT}\ {\rm DISTANCE}$ good query complexity but not good time complexity.

To address this, we consider the following search problem:

- The universe U = [0..n) is partitioned into three sets: $U = I^+ \cup I^- \cup I^-$.
- An oracle $f: U \to \{0, 1\}$ is provided with the following properties:

•
$$\Pr[f(i) = 1] \ge 9/10$$
 if $i \in I^+$,

- $\Pr[f(i) = 1] \le 1/10$ if $i \in I^-$,
- No guarantees on $\Pr[f(i) = 1]$ if $i \in I^{\sim}$.
- The goal is to output an element $i \in I^+ \cup I^\sim$ or confirm that $I^+ = \emptyset$.

We give a $\widetilde{\mathcal{O}}(\sqrt{n})$ -time algorithm, adapting the quantum algorithm for bounded-error inputs from [HMDW03].

Open Questions

• Can we solve N equality equations on a string in time $\widetilde{\mathcal{O}}(N)$?

- Can we solve N equality equations on a string in time $\widetilde{\mathcal{O}}(N)$?
- Can we verify whether there is a k-mismatch occurrence in time $\widetilde{O}(\sqrt{kn})$?

- Can we solve N equality equations on a string in time $\widetilde{\mathcal{O}}(N)$?
- Can we verify whether there is a k-mismatch occurrence in time $\widetilde{O}(\sqrt{kn})$?

Thank you!