Quantum Speed-ups for String Synchronizing Sets, Longest Common Substring, and *k*-mismatch Matching

Ce Jin¹ Jakob Nogler²

 $^{1}\mathsf{MIT}$

²ETH Zurich

March 15, 2024

• Input string S given as a quantum oracle $O_s \colon |i,b
angle \mapsto |i,b\oplus S[i]
angle$

- Input string S given as a quantum oracle $O_s \colon |i, b
 angle \mapsto |i, b \oplus S[i]
 angle$
- Stronger than a classical oracle since queries can be made in superposition

- Input string S given as a quantum oracle $O_s \colon |i, b
 angle \mapsto |i, b \oplus S[i]
 angle$
- Stronger than a classical oracle since queries can be made in superposition
- Query complexity Q(n): counts number of queries to oracle

- Input string S given as a quantum oracle $O_s \colon |i, b
 angle \mapsto |i, b \oplus S[i]
 angle$
- Stronger than a classical oracle since queries can be made in superposition
- Query complexity Q(n): counts number of queries to oracle
- Time complexity T(n): also counts the number of elementary gates

Input: two strings $S_1, S_2 \in \Sigma^n$ **Output:** maximum length *d* such that $S_1[i \dots i + d - 1] = S_2[j \dots j + d - 1]$ for some *i*, *j*

$$S_1 \qquad b a c b c a c b b a c a b a n a n a n a s c b a b c b b a a S_2 \qquad b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a
$$d = 9$$$$

Input: two strings $S_1, S_2 \in \Sigma^n$ **Output:** maximum length *d* such that $S_1[i \dots i + d - 1] = S_2[j \dots j + d - 1]$ for some *i*, *j*

$$S_1 \qquad b a c b c a c b b a c a b a n a n a n a s c b a b c b b a a S_2 \qquad b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a
$$d = 9$$$$

Input: two strings $S_1, S_2 \in \Sigma^n$ **Output:** maximum length *d* such that $S_1[i \dots i + d - 1] = S_2[j \dots j + d - 1]$ for some *i*, *j*

$$S_1 \qquad b a c b c a c b b a c a b a n a n a n a s c b a b c b b b a a S_2 \qquad b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a
$$d = 9$$$$

Well studied in classical settings:

• Linear-time algorithm via suffix tree (Weiner'73, Farach'97)

Input: two strings $S_1, S_2 \in \Sigma^n$

Output: maximum length d such that $S_1[i \dots i + d - 1] = S_2[j \dots j + d - 1]$ for some i, j

$$S_1 \qquad b a c b c a c b b a c a b a n a n a n a s c b a b c b b a a a S_2 \qquad b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a
$$d = 9$$$$

- Linear-time algorithm via suffix tree (Weiner'73, Farach'97)
- Time-space trade-off (SV'13, KSV'14, BGKK'20)

Input: two strings $S_1, S_2 \in \Sigma^n$

Output: maximum length d such that $S_1[i \dots i + d - 1] = S_2[j \dots j + d - 1]$ for some i, j

$$S_1 \qquad b a c b c a c b b a c a b a n a n a n a s c b a b c b b a a S_2 \qquad b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a
$$d = 9$$$$

- Linear-time algorithm via suffix tree (Weiner'73, Farach'97)
- Time-space trade-off (SV'13, KSV'14, BGKK'20)
- Dynamic data structures (ACPR'19, ACPR'20, CGP'20)

Input: two strings $S_1, S_2 \in \Sigma^n$

Output: maximum length d such that $S_1[i \dots i + d - 1] = S_2[j \dots j + d - 1]$ for some i, j

$$S_1 \qquad b a c b c a c b b a c a b a n a n a n a s c b a b c b b a a S_2 \qquad b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a
$$d = 9$$$$

- Linear-time algorithm via suffix tree (Weiner'73, Farach'97)
- Time-space trade-off (SV'13, KSV'14, BGKK'20)
- Dynamic data structures (ACPR'19, ACPR'20, CGP'20)
- Small-alphabet input (CKPR'21)

Binary search on **decisional** problem with threshold $1 \le d \le n$: does LCS $(S_1, S_2) \ge d$ hold?

Binary search on **decisional** problem with threshold $1 \le d \le n$: does LCS $(S_1, S_2) \ge d$ hold?

¹Quantum query complexity and time complexity

Binary search on **decisional** problem with threshold $1 \le d \le n$: does LCS $(S_1, S_2) \ge d$ hold?

¹Quantum query complexity and time complexity

Binary search on **decisional** problem with threshold $1 \le d \le n$: does LCS $(S_1, S_2) \ge d$ hold?

¹Quantum query complexity and time complexity

(Bipartite) Element Distinctness

- Are there i, j such that $S_1[i] = S_2[j]$?
- $Q(n) = \Theta(n^{2/3})$
- Tight lower bound for [AJ'22]

Unstructured Search

 $d = 1 \quad \bigoplus \quad d = n$

(Bipartite) Element Distinctness

- Are there i, j such that $S_1[i] = S_2[j]$?
- $Q(n) = \Theta(n^{2/3})$
- Tight lower bound for [AJ'22]

Unstructured Search

• Does $S_1[i] = S_2[i]$ hold for all $i \in [n]$?

d = 1 \bullet

(Bipartite) Element Distinctness

- Are there i, j such that $S_1[i] = S_2[j]$?
- $Q(n) = \Theta(n^{2/3})$
- Tight lower bound for [AJ'22]

Unstructured Search

• Does $S_1[i] = S_2[i]$ hold for all $i \in [n]$?

d = n

• $Q(n) = \Theta(\sqrt{n})$

 $d = 1 \quad \bigoplus \quad d = n$

(Bipartite) Element Distinctness

- Are there i, j such that $S_1[i] = S_2[j]$?
- $Q(n) = \Theta(n^{2/3})$
- Tight lower bound for [AJ'22]

Unstructured Search

- Does $S_1[i] = S_2[i]$ hold for all $i \in [n]$?
- $Q(n) = \Theta(\sqrt{n})$

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS'11] Deciding LCS with threshold *d* requires $\Omega(n^{2/3}/d^{1/6})$ quantum queries.

Theorem (an almost-tight upper bound) [Jin & N'23]

Given $S_1, S_2 \in \Sigma^n$, there is a quantum algorithm that determines whether $LCS(S_1, S_2) \ge d$ holds in

$$\widetilde{O}(n^{2/3}/d^{1/6-o(1)})$$

quantum query and time complexity.

Theorem (an almost-tight upper bound) [Jin & N'23]

Given $S_1, S_2 \in \Sigma^n$, there is a quantum algorithm that determines whether $LCS(S_1, S_2) \ge d$ holds in

$$\widetilde{O}(n^{2/3}/d^{1/6-o(1)})$$

quantum query and time complexity.

Theorem (an almost-tight upper bound) [Jin & N'23]

Given $S_1, S_2 \in \Sigma^n$, there is a quantum algorithm that determines whether $LCS(S_1, S_2) \ge d$ holds in

$$\widetilde{O}(n^{2/3}/d^{1/6-o(1)})$$

quantum query and time complexity.

An anchor set C should satisfy: if $LCS(S_1, S_2) \ge d$, then S_1 and S_2 must have a length-d common substring anchored by C.

 $S_1 \cdots b a c \underline{b} c a a \underline{b} a n \underline{a} n a n \underline{a} s c b a \underline{c} b b a c \underline{b} c b b a a \cdots$ $S_2 \cdots b c b a a a b \underline{b} a n a n a n a s b c a a b a c c a c b c a b a \cdots$

An anchor set C should satisfy: if $LCS(S_1, S_2) \ge d$, then S_1 and S_2 must have a length-d common substring anchored by C.

At least one common position must be included in C $S_1 \cdots b a c b c a a b a n a n a n a s c b a c b b a c b c b b b a a \cdots$ $S_2 \cdots b c b a a b b a n a n a n a s b c a a b a c c a c b c a b a \cdots$

Theorem [Akmal & Jin'22]

Given a size-*m* anchor set such that the *i*-th anchor can be reported in \mathcal{T} quantum time, we can decide $LCS(S_1, S_2) \ge d$ in $\widetilde{O}(m^{2/3} \cdot (\sqrt{d} + \mathcal{T}))$ quantum time.

An anchor set C should satisfy: if $LCS(S_1, S_2) \ge d$, then S_1 and S_2 must have a length-d common substring anchored by C.

At least one common position must be included in C $S_1 \cdots b a c b c a a b a n a n a n a s c b a c b b a c b c b b b a a \cdots$ $S_2 \cdots b c b a a b b a n a n a n a s b c a a b a c c a c b c a b a \cdots$

Theorem [Akmal & Jin'22]

Given a size-*m* anchor set such that the *i*-th anchor can be reported in \mathcal{T} quantum time, we can decide $LCS(S_1, S_2) \ge d$ in $\widetilde{O}(m^{2/3} \cdot (\sqrt{d} + \mathcal{T}))$ quantum time.

 [CKPR'21]: Such an anchor set for LCS can be constructed from String Synchronizing Sets [KK'19].

An anchor set C should satisfy: if $LCS(S_1, S_2) \ge d$, then S_1 and S_2 must have a length-d common substring anchored by C.

At least one common position must be included in C $S_1 \cdots b a c b c a a b a n a n a n a s c b a c b b a c b c b b b a a \cdots$ $S_2 \cdots b c b a a b b a n a n a n a s b c a a b a c c a c b c a b a \cdots$

Theorem [Akmal & Jin'22]

Given a size-*m* anchor set such that the *i*-th anchor can be reported in \mathcal{T} quantum time, we can decide $LCS(S_1, S_2) \ge d$ in $\widetilde{O}(m^{2/3} \cdot (\sqrt{d} + \mathcal{T}))$ quantum time.

- [CKPR'21]: Such an anchor set for LCS can be constructed from String Synchronizing Sets [KK'19].
- Classical construction of synchronizing sets is slow.

String Synchronizing Sets

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer $1 \le \tau \le n/2$, we say $A \subseteq [1..n - 2\tau + 1]$ is a τ -synchronizing set of T if it satisfies the following properties:

Example: $\tau = 3$ red: positions in A

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer $1 \le \tau \le n/2$, we say $A \subseteq [1..n - 2\tau + 1]$ is a τ -synchronizing set of T if it satisfies the following properties:

• Consistency: If $T[i ... i + 2\tau) = T[j ... j + 2\tau)$, then $i \in A$ if and only if $j \in A$.

Example: $\tau = 3$ red: positions in A
String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer $1 \le \tau \le n/2$, we say $A \subseteq [1..n - 2\tau + 1]$ is a τ -synchronizing set of T if it satisfies the following properties:

• Consistency: If $T[i ... i + 2\tau) = T[j ... j + 2\tau)$, then $i \in A$ if and only if $j \in A$.

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer $1 \le \tau \le n/2$, we say $A \subseteq [1..n - 2\tau + 1]$ is a τ -synchronizing set of T if it satisfies the following properties:

- Consistency: If $T[i ... i + 2\tau) = T[j ... j + 2\tau)$, then $i \in A$ if and only if $j \in A$.
- **Density:** For $i \in [1 \dots n 3\tau + 2]$, $A \cap [i \dots i + \tau) = \emptyset$ if and only if $per(T[i \dots i + 3\tau 2]) \le \tau/3$.

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer $1 \le \tau \le n/2$, we say $A \subseteq [1..n - 2\tau + 1]$ is a τ -synchronizing set of T if it satisfies the following properties:

- Consistency: If $T[i ... i + 2\tau) = T[j ... j + 2\tau)$, then $i \in A$ if and only if $j \in A$.
- **Density:** For $i \in [1 \dots n 3\tau + 2]$, $A \cap [i \dots i + \tau) = \emptyset$ if and only if $per(T[i \dots i + 3\tau 2]) \le \tau/3$.

We want (ideally):

- Sparsity: small size $A = O(n/\tau)$.
- Efficient Computability: fast reporting time of an element of A.

We want (ideally):

- **Sparsity:** small size $A = O(n/\tau)$.
- Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) τ -synchronizing set A of size $n/\tau^{1-o(1)}$, such that given an i we can reported each element of $A \cap [i \dots i + \tau]$ in $\widetilde{O}(\tau^{\frac{1}{2}+o(1)})$ quantum query and time complexity.

We want (ideally):

- Sparsity: small size $A = O(n/\tau)$.
- Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) τ -synchronizing set A of size $n/\tau^{1-o(1)}$, such that given an i we can reported each element of $A \cap [i \dots i + \tau]$ in $\widetilde{O}(\tau^{\frac{1}{2}+o(1)})$ quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

We want (ideally):

- **Sparsity:** small size $A = O(n/\tau)$.
- Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) τ -synchronizing set A of size $n/\tau^{1-o(1)}$, such that given an i we can reported each element of $A \cap [i \dots i + \tau]$ in $\widetilde{O}(\tau^{\frac{1}{2}+o(1)})$ quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

We want (ideally):

- Sparsity: small size $A = O(n/\tau)$.
- Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) τ -synchronizing set A of size $n/\tau^{1-o(1)}$, such that given an i we can reported each element of $A \cap [i \dots i + \tau]$ in $\widetilde{O}(\tau^{\frac{1}{2}+o(1)})$ quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

Many recent applications in classical string algorithms:

• Sublinear-time Burrows-Wheeler Transform [KK'19]

We want (ideally):

- Sparsity: small size $A = O(n/\tau)$.
- Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) τ -synchronizing set A of size $n/\tau^{1-o(1)}$, such that given an i we can reported each element of $A \cap [i \dots i + \tau]$ in $\widetilde{O}(\tau^{\frac{1}{2}+o(1)})$ quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

- Sublinear-time Burrows-Wheeler Transform [KK'19]
- Optimal LCE data structure [KK'19]

We want (ideally):

- Sparsity: small size $A = O(n/\tau)$.
- Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) τ -synchronizing set A of size $n/\tau^{1-o(1)}$, such that given an i we can reported each element of $A \cap [i \dots i + \tau]$ in $\widetilde{O}(\tau^{\frac{1}{2}+o(1)})$ quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

- Sublinear-time Burrows-Wheeler Transform [KK'19]
- Optimal LCE data structure [KK'19]
- Longest Common Substring [CKPR'21]

We want (ideally):

- Sparsity: small size $A = O(n/\tau)$.
- Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) τ -synchronizing set A of size $n/\tau^{1-o(1)}$, such that given an i we can reported each element of $A \cap [i \dots i + \tau]$ in $\widetilde{O}(\tau^{\frac{1}{2}+o(1)})$ quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

- Sublinear-time Burrows-Wheeler Transform [KK'19]
- Optimal LCE data structure [KK'19]
- Longest Common Substring [CKPR'21]
- Dynamic & Compressed suffix arrays [KK'22], [KK'23]

Input: $T \in \Sigma^n$ and $i, j \in [n]$ **Output:** length of the longest common prefix of $T[i \dots n]$ and $T[j \dots n]$

Input: $T \in \Sigma^n$ and $i, j \in [n]$

Output: length of the longest common prefix of T[i ... n] and T[j ... n]

Theorem [Jin & N'23], based on [KK'19]

Given an integer $1 \le \tau \le n/2$ there is a quantum algorithm such that:

Input: $T \in \Sigma^n$ and $i, j \in [n]$

Output: length of the longest common prefix of T[i ... n] and T[j ... n]

Theorem [Jin & N'23], based on [KK'19]

Given an integer $1 \le \tau \le n/2$ there is a quantum algorithm such that:

• it outputs in $\mathcal{T}_{prep} = \widetilde{O}(n/\tau^{\frac{1}{2}-o(1)})$ a data structure D (with classical representation).

Input: $T \in \Sigma^n$ and $i, j \in [n]$

Output: length of the longest common prefix of T[i ... n] and T[j ... n]

Theorem [Jin & N'23], based on [KK'19]

Given an integer $1 \le \tau \le n/2$ there is a quantum algorithm such that:

- it outputs in $\mathcal{T}_{prep} = \widetilde{O}(n/\tau^{\frac{1}{2}-o(1)})$ a data structure D (with classical representation).
- Given quantum random access to D, we can answer LCE queries in $\mathcal{T}_{ans} = \widetilde{O}(\sqrt{\tau})$ quantum time.

Input: $T \in \Sigma^n$ and $i, j \in [n]$

Output: length of the longest common prefix of T[i ... n] and T[j ... n]

Theorem [Jin & N'23], based on [KK'19]

Given an integer $1 \leq au \leq n/2$ there is a quantum algorithm such that:

- it outputs in $\mathcal{T}_{prep} = \widetilde{O}(n/\tau^{\frac{1}{2}-o(1)})$ a data structure D (with classical representation).
- Given quantum random access to D, we can answer LCE queries in $\mathcal{T}_{ans} = \widetilde{O}(\sqrt{\tau})$ quantum time.

$$\mathcal{T}_{\mathsf{prep}} = 0, \ \mathcal{T}_{\mathsf{ans}} = \widetilde{O}(\sqrt{n}) \qquad \qquad \mathcal{T}_{\mathsf{prep}} = O(n), \ \mathcal{T}_{\mathsf{ans}} = O(1)$$

Tradeoff: $(\mathcal{T}_{prep} + \sqrt{n}) \cdot (\mathcal{T}_{ans} + 1) \geq \widetilde{\Omega}(n)$

Input: a text $T \in \Sigma^n$, a pattern $P \in \Sigma^m$, and a threshold $k \in [m]$ **Output:** does T contain a substring with hamming distance at most k from P?

Input: a text $T \in \Sigma^n$, a pattern $P \in \Sigma^m$, and a threshold $k \in [m]$

Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: $\Omega(\sqrt{kn})$

Input: a text $T \in \Sigma^{2m}$, a pattern $P \in \Sigma^m$, and a threshold $k \in [m]$

Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: $\Omega(\sqrt{kn})$

Input: a text $T \in \Sigma^{2m}$, a pattern $P \in \Sigma^m$, and a threshold $k \in [m]$

Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: $\Omega(\sqrt{kn})$

[Bringmann, Künnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20] \Rightarrow Structural insights: either there are few matches or *P* is *almost* periodic.

Input: a text $T \in \Sigma^{2m}$, a pattern $P \in \Sigma^m$, and a threshold $k \in [m]$

Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: $\Omega(\sqrt{kn})$

[Bringmann, Künnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20] \Rightarrow Structural insights: either there are few matches or *P* is *almost* periodic.

Theorem [CKW'20]

At least one of the following holds:

Input: a text $T \in \Sigma^{2m}$, a pattern $P \in \Sigma^m$, and a threshold $k \in [m]$

Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: $\Omega(\sqrt{kn})$

[Bringmann, Künnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20] \Rightarrow Structural insights: either there are few matches or *P* is *almost* periodic.

Theorem [CKW'20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

Input: a text $T \in \Sigma^{2m}$, a pattern $P \in \Sigma^m$, and a threshold $k \in [m]$

Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: $\Omega(\sqrt{kn})$

[Bringmann, Künnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20] \Rightarrow Structural insights: either there are few matches or *P* is *almost* periodic.

Theorem [CKW'20]

At least one of the following holds:

- (i) The number of k-mismatch occurrences of P in T is O(k).
- (ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Input: a text $T \in \Sigma^{2m}$, a pattern $P \in \Sigma^m$, and a threshold $k \in [m]$

Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: $\Omega(\sqrt{kn})$

[Bringmann, Künnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20] \Rightarrow Structural insights: either there are few matches or *P* is *almost* periodic.

Theorem [CKW'20]

At least one of the following holds:

- (i) The number of k-mismatch occurrences of P in T is O(k).
- (ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring $\widetilde{O}(\sqrt{km})$ quantum time and query complexity.

Case (i): O(k) candidate positions for k-mismatch occurrences.

Speed up candidate position verification through LCE data structure:

Case (i): O(k) candidate positions for k-mismatch occurrences.

Speed up candidate position verification through LCE data structure:

$$\widetilde{O}(\underbrace{m/\tau^{\frac{1}{2}-o(1)}}_{\text{Preprocessing}} + \underbrace{\sqrt{k} \cdot k\sqrt{\tau}}_{\text{Grover's search } \times k \text{ LCE queries}}) \stackrel{(\tau=m/k^{3/2})}{=} \widetilde{O}(k^{3/4}m^{1/2+o(1)})$$

Case (i): O(k) candidate positions for k-mismatch occurrences.

Speed up candidate position verification through LCE data structure:

$$\widetilde{O}(\underbrace{m/\tau^{\frac{1}{2}-o(1)}}_{\text{Preprocessing}} + \underbrace{\sqrt{k} \cdot k\sqrt{\tau}}_{\text{Grover's search } \times k \text{ LCE queries}}) \stackrel{(\tau=m/k^{3/2})}{=} \widetilde{O}(k^{3/4}m^{1/2+o(1)})$$

Case (ii): P is almost periodic.

Our Results for the *k*-mismatch Matching Problem

Theorem [Jin & N'23]

We can verify the existence of a k-mismatch occurrence of P in T (and report its starting position in case it exists) in $\widetilde{O}(k^{3/4}n^{1/2}m^{o(1)})$ query complexity and $\widetilde{O}(k\sqrt{n})$ time complexity.

Our Results for the *k*-mismatch Matching Problem

Theorem [Jin & N'23]

We can verify the existence of a k-mismatch occurrence of P in T (and report its starting position in case it exists) in $\widetilde{O}(k^{3/4}n^{1/2}m^{o(1)})$ query complexity and $\widetilde{O}(k\sqrt{n})$ time complexity.

Can we improve the extra \(\tau^{o(1)}\) factors in the sparsity and the time complexity of our string synchronizing set to poly-logarithmic?

- Can we improve the extra \(\tau^{o(1)}\) factors in the sparsity and the time complexity of our string synchronizing set to poly-logarithmic?
- > Can we improve the quantum query complexity of the *k*-mismatch matching algorithm to closer to the lower bound \sqrt{kn} ?

- Can we improve the extra \(\tau^{o(1)}\) factors in the sparsity and the time complexity of our string synchronizing set to poly-logarithmic?
- > Can we improve the quantum query complexity of the k-mismatch matching algorithm to closer to the lower bound \sqrt{kn} ?
- Can our new result for string synchronizing sets find more applications in quantum string algorithms?

- Can we improve the extra \(\tau^{o(1)}\) factors in the sparsity and the time complexity of our string synchronizing set to poly-logarithmic?
- > Can we improve the quantum query complexity of the k-mismatch matching algorithm to closer to the lower bound \sqrt{kn} ?
- Can our new result for string synchronizing sets find more applications in quantum string algorithms?

Thank you!
Construction of τ -synchronizing set A

We focus on 'non-periodic case': $per(T[i ... i + \tau]) > \tau/3$ for all i

Follow [KK'19]'s framework of 'picking local minimizers' of a hash function ϕ :

- Choose $\phi: \Sigma^{\tau} \to \mathbb{Z}$
- Denote $\Phi(i) = \phi(T[i \dots i + \tau 1])$

 $i \in \mathsf{A}$ iff minimum is achieved at $\Phi(i)$ or $\Phi(i + \tau)$

Consistency and Density always hold.

Construction of τ -synchronizing set A

How to ensure **sparsity**?

> The hash function ϕ should guarantee probability $O(1/\tau)$ of *i* being included in A.

How to make ϕ efficiently computable using few quantum queries?

- > We need only ability to distinguish substrings with $\Omega(\tau)$ overlap: an adaptation of Deterministic Sampling [Vishkin'91] gives us this guarantee.
- > To further speed up computability we structure ϕ such that one can find the minimal hash value in a tournament tree-like fashion.

By using quantum minimum finding for
each level, we obtain the recursion
$$T(\tau) = \sqrt{b} \cdot (T(\tau/b) + \tilde{O}(\sqrt{\tau})) \cdot O(\log \tau)$$
$$= \tau^{1/2+o(1)}$$
$$C(\log \tau) = \tau^{1/2+o(1)}$$