Quantum Speed-ups for String Synchronizing Sets, Longest

Common Substring, and k-mismatch Matching

Ce Jin! Jakob Nogler?

IMIT

2ETH Zurich

March 15, 2024

1/15

Our contribution are quantum speed-ups for several string problems:

2/15

Our contribution are quantum speed-ups for several string problems:

® Input string S given as a quantum oracle Os: |i, b) — |i, b & S[i])

2/15

Our contribution are quantum speed-ups for several string problems:

® Input string S given as a quantum oracle Os: |i, b) — |i, b & S[i])

® Stronger than a classical oracle since queries can be made in superposition

2/15

Our contribution are quantum speed-ups for several string problems:

® Input string S given as a quantum oracle Os: |i, b) — |i, b & S[i])
® Stronger than a classical oracle since queries can be made in superposition

® Query complexity Q(n): counts number of queries to oracle

2/15

Our contribution are quantum speed-ups for several string problems:

® Input string S given as a quantum oracle Os: |i, b) — |i, b & S[i])
® Stronger than a classical oracle since queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates

2/15

Longest Common Substring (LCS) Problem

Input: two strings 51,5, € "
Output: maximum length d such that Si[i..i+d —1] = S3[j..j + d — 1] for some i, j

5 bacbcacbbacabanananascbabcbbbaa
S bcbaaabbanananasbcaabaccacbcaba
\ |
d=9

3/15

Longest Common Substring (LCS) Problem

Input: two strings 51,5, € "
Output: maximum length d such that Si[i..i+d —1] = S3[j..j + d — 1] for some i, j

S

bacbcacbbacabanananascbabcbbbaa
\))

bcbaaabbanananasbcaabaccacbcaba
\
d=9

Well studied in classical settings:

3/15

Longest Common Substring (LCS) Problem

Input: two strings 51,5, € ¥”
Output: maximum length d such that Si[i..i+d —1] = S3[j..j + d — 1] for some i, j

S

bacbcacbbacabanananascbabcbbbaa
\))

bcbaaabbanananasbcaabaccacbcaba
\
d=9

Well studied in classical settings:

® Linear-time algorithm via suffix tree (Weiner'73, Farach'97)

3/15

Longest Common Substring (LCS) Problem

Input: two strings 51,5, € ¥”
Output: maximum length d such that Si[i..i+d —1] = S3[j..j + d — 1] for some i, j

S

bacbcacbbacabanananascbabcbbbaa
\))

bcbaaabbanananasbcaabaccacbcaba
\
d=9

Well studied in classical settings:

® Linear-time algorithm via suffix tree (Weiner'73, Farach'97)
® Time-space trade-off (SV'13, KSV'14, BGKK'20)

3/15

Longest Common Substring (LCS) Problem

Input: two strings 51,5, € ¥”
Output: maximum length d such that Si[i..i+d —1] = S3[j..j + d — 1] for some i, j

bacbcacbbacabanananascbabcbbbaa

S
bcbaaabbanananasbcaabaccacbcaba
\ |

S

d=9

Well studied in classical settings:
® Linear-time algorithm via suffix tree (Weiner'73, Farach'97)

® Time-space trade-off (SV'13, KSV'14, BGKK'20)
¢ Dynamic data structures (ACPR’'19, ACPR'20, CGP'20)

3/15

Longest Common Substring (LCS) Problem

Input: two strings 51,5, € ¥”
Output: maximum length d such that Si[i..i+d —1] = S3[j..j + d — 1] for some i, j

5 bacbcacbbacabanananascbabcbbbaa
S bcbaaabbanananasbcaabaccacbcaba
\ |
d=9

Well studied in classical settings:
® Linear-time algorithm via suffix tree (Weiner'73, Farach'97)

® Time-space trade-off (SV'13, KSV'14, BGKK'20)
¢ Dynamic data structures (ACPR’'19, ACPR'20, CGP'20)
® Small-alphabet input (CKPR'21)

3/15

Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 < d < n: does LCS(S1,52) > d hold?

4/15

Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 < d < n: does LCS(S1,5,) > d hold?

1n5/6
QEJ n2/3]
S
nl/2 b
1 nl/3 n2/3 n
Threshold d
LCS with threshold?! LCS!

Le Gall and Seddighin (ITCS'22) O(min{n?/3. d%/2 n/d"/2})

1Quantum query complexity and time complexity
4/15

Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 < d < n: does LCS(S1,5,) > d hold?

1n5/6
QEJ n2/3]
S
nl/2 b
1 nl/3 n2/3 n
Threshold d
LCS with threshold?! LCS!

Le Gall and Seddighin (ITCS'22) O(min{n®/3 . d%/2 n/d¥/2}) O(n®/)

1Quantum query complexity and time complexity
4/15

Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 < d < n: does LCS(S1,5,) > d hold?

1n5/6
2 n2/3
£
nl/2 b
1 nl/3 n2/3 n
Threshold d
LCS with threshold? LCS?
Le Gall and Seddighin (ITCS'22) O(min{n®/3 . d%/2 n/d¥/2}) O(n®/)
Akmal and Jin (SODA'22) O(n?/3) O(n?/3)

1Quantum query complexity and time complexity
4/15

LCS with threshold

d=1 @ y@ d=n

(Bipartite) Element Distinctness Unstructured Search

5/15

LCS with threshold

d=1 @ y@ d=n

(Bipartite) Element Distinctness Unstructured Search
® Are there i, such that Si[i] = S[j]?

5/15

LCS with threshold

d=1 @ y@ d=n

(Bipartite) Element Distinctness Unstructured Search
® Are there i, such that Si[i] = S[j]?

. Q(n) = O(n?"?)

5/15

LCS with threshold

d=1 @ y@ d=n

(Bipartite) Element Distinctness Unstructured Search
® Are there i, such that Si[i] = S[j]?

* Q(n) =06(n*?)
® Tight lower bound for [AJ'22]

5/15

LCS with threshold

(Bipartite) Element Distinctness Unstructured Search
® Are there i, such that Si[i] = S2[j]? ® Does Si[i] = Sy[i] hold for all i € [n]?

* Q(n) =06(n*?)
® Tight lower bound for [AJ'22]

5/15

LCS with threshold

d=1 @ y@ d=n
(Bipartite) Element Distinctness Unstructured Search
® Are there i, such that Si[i] = S2[j]? ® Does Si[i] = Sy[i] hold for all i € [n]?
* Q(n) =06(n*?) * Q(n) =0(v/n)

® Tight lower bound for [AJ'22]

5/15

LCS with threshold

d=1 @ y@ d=n
(Bipartite) Element Distinctness Unstructured Search
® Are there i, such that Si[i] = S2[j]? ® Does Si[i] = Sy[i] hold for all i € [n]?
* Q(n) =06(n*?) * Q(n) =0(v/n)

® Tight lower bound for [AJ'22]

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS'11]
Deciding LCS with threshold d requires Q(n?/3/d/®) quantum queries.

5/15

Our results for LCS with threshold

Theorem (an almost-tight upper bound) [Jin & N'23]

Given 51,5, € ", there is a quantum algorithm that determines whether LCS(S51, S,) > d
holds in
6(n2/3/d1/6—o(1))

quantum query and time complexity.

6/15

Our results for LCS with threshold

Theorem (an almost-tight upper bound) [Jin & N'23]

Given 51,5, € ", there is a quantum algorithm that determines whether LCS(S51, S,) > d
holds in
6(n2/3/d1/6—o(1))

quantum query and time complexity.

15/6
—— Le Gall and Seddighin (ITCS'22)
v n2/3 —— Akmal and Jin (SODA'22)
5
nl/2 |
1 nl/3 n2/3 n
Threshold d

6/15

Our results for LCS with threshold

Theorem (an almost-tight upper bound) [Jin & N'23]

Given 51,5, € ", there is a quantum algorithm that determines whether LCS(S51, S,) > d
holds in
6(n2/3/d1/6—o(1))

quantum query and time complexity.

15/6
—— Le Gall and Seddighin (ITCS'22)
v 2/3 —— Akmal and Jin (SODA'22)
E T —— This work
a2 =
1 nl/3 n2/3 n
Threshold d

6/15

LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1,S2) > d, then S; and S; must have a length-d
common substring anchored by C.

— At least one common position must be included in C

S; -~ bacbcaabanananascbacbbacbcbbbaa---
S -~ bcbaaabbanananasbcaabaccacbcaba---

7/15

LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1,S2) > d, then S; and S; must have a length-d
common substring anchored by C.

— At least one common position must be included in C

S; -~ bacbcaabanananascbacbbacbcbbbaa---
S -~ bcbaaabbanananasbcaabaccacbcaba---

Given a size-m anchor set such that the i-th anchor can be reported in 7" quantum time, we
can decide LCS(S1,S52) > d in O(m2/3 . (\/H—i- T)) quantum time.

7/15

LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1,S2) > d, then S; and S; must have a length-d
common substring anchored by C.

— At least one common position must be included in C

S; -~ bacbcaabanananascbacbbacbcbbbaa---
S -~ bcbaaabbanananasbcaabaccacbcaba---

Given a size-m anchor set such that the i-th anchor can be reported in 7" quantum time, we
can decide LCS(S1,S52) > d in O(m2/3 . (\/H—i- T)) quantum time.

» [CKPR'21]: Such an anchor set for LCS can be constructed from String Synchronizing
Sets [KK'19].

7/15

LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1,S2) > d, then S; and S; must have a length-d
common substring anchored by C.

— At least one common position must be included in C

S; -~ bacbcaabanananascbacbbacbcbbbaa---
S -~ bcbaaabbanananasbcaabaccacbcaba---

Given a size-m anchor set such that the i-th anchor can be reported in 7" quantum time, we
can decide LCS(S1,S52) > d in O(m2/3 . (\/H—i- T)) quantum time.

» [CKPR'21]: Such an anchor set for LCS can be constructed from String Synchronizing
Sets [KK'19].

» C(lassical construction of synchronizing sets is slow.

7/15

Our results

[String Synchronizing Sets]

8/15

Our results

[String Synchronizing Sets]

/

[LCS with threshold]

8/15

Our results

[String Synchronizing Sets]

/\

[LCS with threshold] [Data Structure for LCE Queries]

8/15

Our results

[String Synchronizing Sets]

/\

[LCS with threshold] [Data Structure for LCE Queries]

!

[k-mismatch Matching Problem]

8/15

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer 1 <7< n/2, wesay AC[l..n—27+1]is a
T-synchronizing set of T if it satisfies the following properties:

Example: 7 =3
red: positions in A

T ---bacbcaaaaaaaaaaaaaaabbbbcacbcaaa---:

9/15

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer 1 <7< n/2, wesay AC[l..n—27+1]is a
T-synchronizing set of T if it satisfies the following properties:
® Consistency: If T[i..i+27)= T[j..j+27), then i € Aif and only if j € A.

Example: 7 =3
red: positions in A

T ---bacbcaaaaaaaaaaaaaaabbbbcacbcaaa---:

9/15

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer 1 <7< n/2, wesay AC[l..n—27+1]is a
T-synchronizing set of T if it satisfies the following properties:
® Consistency: If T[i..i+27)= T[j..j+27), then i € Aif and only if j € A.

Example: 7 =3
red: positions in A

consistency

T

T ---blacbcaalaaaaaaaaaaaaabbbbclacbcaala-:--

9/15

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer 1 <7< n/2, wesay AC[l..n—27+1]is a
T-synchronizing set of T if it satisfies the following properties:
® Consistency: If T[i..i+27)= T[j..j+27), then i € Aif and only if j € A.
e Density: Forie[1..n—37+2], AN[i..i+7)=0if and only if
per(T[i..i+37—2]) <71/3.

Example: 7 =3
red: positions in A

consistency

T

T ---blacbcaalaaaaaaaaaaaaabbbbclacbcaala-:--

9/15

String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer 1 <7< n/2, wesay AC[l..n—27+1]is a
T-synchronizing set of T if it satisfies the following properties:
® Consistency: If T[i..i+27)= T[j..j+27), then i € Aif and only if j € A.
e Density: Forie[1..n—37+2], AN[i..i+7)=0if and only if
per(T[i..i+37—2]) <71/3.

Example: 7 =3
red: positions in A

consistency

T

T ---blacbclaalaaaaaaaalaaaaalbbbblcfacbcaala---

/

highly periodic region density

9/15

Our Result for String Synchronizing Sets

We want (ideally):
® Sparsity: small size A= O(n/7).
e Efficient Computability: fast reporting time of an element of A.

10/15

Our Result for String Synchronizing Sets

We want (ideally):
® Sparsity: small size A= O(n/7).
e Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) 7-synchronizing set A of size n/71=°(1), such that given an i we
can reported each element of AN[i..i+ 7] in O(T%“’(l)) quantum query and time complexity.

10/15

Our Result for String Synchronizing Sets

We want (ideally):
® Sparsity: small size A= O(n/7).
e Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) 7-synchronizing set A of size n/71=°(1), such that given an i we
can reported each element of AN[i..i+ 7] in O(T%“’(l)) quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

10/15

Our Result for String Synchronizing Sets

We want (ideally):
® Sparsity: small size A= O(n/7).
e Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) 7-synchronizing set A of size n/71=°(1), such that given an i we
can reported each element of AN[i..i+ 7] in O(T%“’(l)) quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

Many recent applications in classical string algorithms:

10/15

Our Result for String Synchronizing Sets

We want (ideally):
® Sparsity: small size A= O(n/7).
e Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) 7-synchronizing set A of size n/71=°(1), such that given an i we
can reported each element of AN[i..i+ 7] in O(T%“’(l)) quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

Many recent applications in classical string algorithms:
® Sublinear-time Burrows-Wheeler Transform [KK'19]

10/15

Our Result for String Synchronizing Sets

We want (ideally):
® Sparsity: small size A= O(n/7).
e Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) 7-synchronizing set A of size n/71=°(1), such that given an i we
can reported each element of AN[i..i+ 7] in O(T%“’(l)) quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

Many recent applications in classical string algorithms:
® Sublinear-time Burrows-Wheeler Transform [KK'19]
¢ Optimal LCE data structure [KK'19]

10/15

Our Result for String Synchronizing Sets

We want (ideally):
® Sparsity: small size A= O(n/7).
e Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) 7-synchronizing set A of size n/71=°(1), such that given an i we
can reported each element of AN[i..i+ 7] in O(T%“’(l)) quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

Many recent applications in classical string algorithms:
® Sublinear-time Burrows-Wheeler Transform [KK'19]
¢ Optimal LCE data structure [KK'19]
® Longest Common Substring [CKPR'21]

10/15

Our Result for String Synchronizing Sets

We want (ideally):
® Sparsity: small size A= O(n/7).
e Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N'23]

There exists a (randomized) 7-synchronizing set A of size n/71=°(1), such that given an i we
can reported each element of AN[i..i+ 7] in O(T%“’(l)) quantum query and time complexity.

Techniques: [KK'19] + Divide & Conquer + quantum minimum finding + [Vishkin'91]

Many recent applications in classical string algorithms:
® Sublinear-time Burrows-Wheeler Transform [KK'19]
Optimal LCE data structure [KK'19]
Longest Common Substring [CKPR'21]
Dynamic & Compressed suffix arrays [KK'22], [KK'23]

10/15

Data Structure for LCE Queries

Input: 7T € X" and i,j € [n]
Output: length of the longest common prefix of T[i..n] and T[j..n]

11/15

Data Structure for LCE Queries

Input: 7T € X" and i,j € [n]
Output: length of the longest common prefix of T[i..n] and T[j..n]

Theorem [Jin & N'23], based on [KK'19]

Given an integer 1 < 7 < n/2 there is a quantum algorithm such that:

11/15

Data Structure for LCE Queries

Input: 7T € X" and i,j € [n]
Output: length of the longest common prefix of T[i..n] and T[j..n]

Theorem [Jin & N'23], based on [KK'19]
Given an integer 1 < 7 < n/2 there is a quantum algorithm such that:

: : ~ 1 . . .
® it outputs in Tpep = O(n/727°)) a data structure D (with classical representation).

11/15

Data Structure for LCE Queries

Input: 7T € X" and i,j € [n]
Output: length of the longest common prefix of T[i..n] and T[j..n]

Theorem [Jin & N'23], based on [KK'19]
Given an integer 1 < 7 < n/2 there is a quantum algorithm such that:

: : ~ 1 . . .
® it outputs in Tpep = O(n/727°)) a data structure D (with classical representation).

® Given quantum random access to D, we can answer LCE queries in Tans = 5(\/?)
quantum time.

11/15

Data Structure for LCE Queries

Input: 7T € X" and i,j € [n]
Output: length of the longest common prefix of T[i..n] and T[j..n]

Theorem [Jin & N'23], based on [KK'19]
Given an integer 1 < 7 < n/2 there is a quantum algorithm such that:

: : ~ 1 . . :
® it outputs in Tpep = O(n/727°)) a data structure D (with classical representation).

® Given quantum random access to D, we can answer LCE queries in Tans = 5(\/?)
quantum time.

® L]
Torep = 0, Tans = O(v/) Torep = O(n), Tans = O(1)

Tradeoff: (Tprep + /1) - (Tans + 1) > Q(n)

11/15

The (Hamming) k-mismatch Matching Problem

Input: atext T € X", a pattern P € £, and a threshold k € [m)]
Output: does T contain a substring with hamming distance at most k from P?

12/15

The (Hamming) k-mismatch Matching Problem

Input: atext T € X", a pattern P € £, and a threshold k € [m)]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Q(v/ kn)

12/15

The (Hamming) k-mismatch Matching Problem

Input: a text T € £2™, a pattern P € £™, and a threshold k € [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Q(v/ kn)

12/15

The (Hamming) k-mismatch Matching Problem

Input: a text T € 27, a pattern P € ¥™, and a threshold k € [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Q(v/ kn)

[Bringmann, Kiinnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20]
= Structural insights: either there are few matches or P is almost periodic.

12/15

The (Hamming) k-mismatch Matching Problem

Input: atext T € Y2m g pattern P € X™, and a threshold k € [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Q(v/ kn)

[Bringmann, Kinnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20]
= Structural insights: either there are few matches or P is almost periodic.

At least one of the following holds:

12/15

The (Hamming) k-mismatch Matching Problem

Input: atext T € Y2m g pattern P € X™, and a threshold k € [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Q(v/ kn)

[Bringmann, Kinnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20]
= Structural insights: either there are few matches or P is almost periodic.

At least one of the following holds:
(i) The number of k-mismatch occurrences of P in T is O(k).

12/15

The (Hamming) k-mismatch Matching Problem

Input: atext T € Y2m g pattern P € X™, and a threshold k € [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Q(v/ kn)

[Bringmann, Kinnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20]
= Structural insights: either there are few matches or P is almost periodic.

At least one of the following holds:
(i) The number of k-mismatch occurrences of P in T is O(k).

(i) There are O(k) mismatches between P and the periodic extension of a string Q.

12/15

The (Hamming) k-mismatch Matching Problem

Input: atext T € Y2m g pattern P € X™, and a threshold k € [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Q(v/ kn)

[Bringmann, Kinnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20]
= Structural insights: either there are few matches or P is almost periodic.

At least one of the following holds:
(i) The number of k-mismatch occurrences of P in T is O(k).

(i) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
O(v km) quantum time and query complexity.

12/15

Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

candidate position
|

T t

. ,

13/15

Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

candidate position
|

T t

X X

P

LCE query

13/15

Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

candidate position
|

T t

X X
X X

P

LCE query

13/15

Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

candidate position
|

T t

X X
X X

P

LCE query

Speed up candidate position verification through LCE data structure:

O(m/r2°M) + ik

Preprocessing Grover's search x k LCE queries

13/15

Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

candidate position
|

T t

X X
X X

P

LCE query

Speed up candidate position verification through LCE data structure:

O(m/rz—°@) + VK - ky/T) T=mLE) B (k314 1 /2 +e1)y

Preprocessing Grover's search x k LCE queries

13/15

Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

candidate position
|

T t

X X
X X

P

LCE query

Speed up candidate position verification through LCE data structure:

rm K3 <
O(m/rz—°@) + VK - ky/T) (r=m/k3/2) O(K3/* ml/2+o(1)y

Preprocessing Grover's search x k LCE queries

Case (ii): P is almost periodic.

T ¢

Py

13/15

Our Results for the k-mismatch Matching Problem

Theorem [Jin & N'23]

We can verify the existence of a k-mismatch occurrence of P in T (and report its starting
position in case it exists) in O(k3/*n'/2m°(1)) query complexity and O(k+/n) time complexity.

14/15

Our Results for the k-mismatch Matching Problem

Theorem [Jin & N'23]

We can verify the existence of a k-mismatch occurrence of P in T (and report its starting
position in case it exists) in O(k3/*n'/2m°(1)) query complexity and O(k+/n) time complexity.

N

O(ky/n)

14/15

Open Problems

» Can we improve the extra 7°(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

15/15

Open Problems

» Can we improve the extra 7°(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

» Can we improve the quantum query complexity of the k-mismatch matching algorithm to
closer to the lower bound v/ kn?

15/15

Open Problems

» Can we improve the extra 7°(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

» Can we improve the quantum query complexity of the k-mismatch matching algorithm to
closer to the lower bound v/ kn?

» Can our new result for string synchronizing sets find more applications in quantum string
algorithms?

15/15

Open Problems

» Can we improve the extra 7°(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

» Can we improve the quantum query complexity of the k-mismatch matching algorithm to
closer to the lower bound v/ kn?

» Can our new result for string synchronizing sets find more applications in quantum string
algorithms?

Thank you!

15/15

Construction of 7-synchronizing set A

We focus on ‘non-periodic case’: per(T[i..i+7]) > 7/3 for all i

Follow [KK'19]'s framework of ‘picking local minimizers' of a hash function ¢:
® Choose ¢ : X7 — Z
® Denote (i) =(T[i..i+7—1])

T
O(i) |}
o(i+1)| !

o(i + 7) |

i € A iff minimum is achieved at ®(/) or ®(i + 7)

Consistency and Density always hold.

16/15

Construction of 7-synchronizing set A

How to ensure sparsity?
» The hash function ¢ should guarantee probability O(1/7) of i being included in A.

How to make ¢ efficiently computable using few quantum queries?

» We need only ability to distinguish substrings with Q(7) overlap: an adaptation of
Deterministic Sampling [Vishkin'91] gives us this guarantee.

» To further speed up computability we structure ¢ such that one can find the minimal
hash value in a tournament tree-like fashion.

By using quantum minimum finding for

h level btain th i T
each level, we obtain the recursion | T‘/b []/T/b | Tm T‘/b |

T(r)=Vb-(T(r/b)+ O(v/7)) - O(log7)
— 71/2+0(1) 0000 0000

17/15

