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Our contribution are quantum speed-ups for several string problems:

® Input string S given as a quantum oracle Os: |i, b) — |i, b & S[i])
® Stronger than a classical oracle since queries can be made in superposition
® Query complexity Q(n): counts number of queries to oracle

® Time complexity T(n): also counts the number of elementary gates
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Longest Common Substring (LCS) Problem

Input: two strings 51,5, € "
Output: maximum length d such that Si[i..i+d —1] = S3[j..j + d — 1] for some i, j

5 bacbcacbbacabanananascbabcbbbaa
S bcbaaabbanananasbcaabaccacbcaba
\ |
d=9
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Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 < d < n: does LCS(S1,5,) > d hold?
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LCS with threshold

d=1 @ y@ d=n
(Bipartite) Element Distinctness Unstructured Search
® Are there i, such that Si[i] = S2[j]? ® Does Si[i] = Sy[i] hold for all i € [n]?
* Q(n) =06(n*?) * Q(n) =0(v/n)

® Tight lower bound for [AJ'22]

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS'11]
Deciding LCS with threshold d requires Q(n?/3/d/®) quantum queries.
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Our results for LCS with threshold

Theorem (an almost-tight upper bound) [Jin & N'23]

Given 51,5, € ", there is a quantum algorithm that determines whether LCS(S51, S,) > d
holds in
6(n2/3/d1/6—o(1))

quantum query and time complexity.
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LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1,S2) > d, then S; and S; must have a length-d
common substring anchored by C.

— At least one common position must be included in C

S; -~ bacbcaabanananascbacbbacbcbbbaa---
S -~ bcbaaabbanananasbcaabaccacbcaba---
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Given a size-m anchor set such that the i-th anchor can be reported in 7" quantum time, we
can decide LCS(S1,S52) > d in O(m2/3 . (\/H—i- T)) quantum time.

» [CKPR'21]: Such an anchor set for LCS can be constructed from String Synchronizing
Sets [KK'19].

» C(lassical construction of synchronizing sets is slow.
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String Synchronizing Sets [Kempa & Kociumaka'19]

For a string T[1..n] and a positive integer 1 <7< n/2, wesay AC[l..n—27+1]is a
T-synchronizing set of T if it satisfies the following properties:
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T-synchronizing set of T if it satisfies the following properties:
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/

highly periodic region density
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Given an integer 1 < 7 < n/2 there is a quantum algorithm such that:

: : ~ 1 . . :
® it outputs in Tpep = O(n/727°)) a data structure D (with classical representation).

® Given quantum random access to D, we can answer LCE queries in Tans = 5(\/?)
quantum time.

® L ]
Torep = 0, Tans = O(v/) Torep = O(n), Tans = O(1)

Tradeoff: (Tprep + /1) - (Tans + 1) > Q(n)
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The (Hamming) k-mismatch Matching Problem

Input: atext T € X", a pattern P € £, and a threshold k € [m)]
Output: does T contain a substring with hamming distance at most k from P?
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[Bringmann, Kinnemann & Wellnitz'19] [Charalampopoulus, Kociumaka & Wellnitz'20]
= Structural insights: either there are few matches or P is almost periodic.

At least one of the following holds:
(i) The number of k-mismatch occurrences of P in T is O(k).

(i) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
O(v km) quantum time and query complexity.
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Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.
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LCE query

Speed up candidate position verification through LCE data structure:
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Preprocessing Grover's search x k LCE queries

Case (ii): P is almost periodic.
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Our Results for the k-mismatch Matching Problem

Theorem [Jin & N'23]

We can verify the existence of a k-mismatch occurrence of P in T (and report its starting
position in case it exists) in O(k3/*n'/2m°(1)) query complexity and O(k+/n) time complexity.
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Open Problems

» Can we improve the extra 7°(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?
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Open Problems

» Can we improve the extra 7°(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

» Can we improve the quantum query complexity of the k-mismatch matching algorithm to
closer to the lower bound v/ kn?

» Can our new result for string synchronizing sets find more applications in quantum string
algorithms?

Thank you!
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Construction of 7-synchronizing set A

We focus on ‘non-periodic case’: per(T[i..i+7]) > 7/3 for all i

Follow [KK'19]'s framework of ‘picking local minimizers' of a hash function ¢:
® Choose ¢ : X7 — Z
® Denote (i) =(T[i..i+7—1])

T
O(i) |}
o(i+1)| !

o(i + 7) |

i € A iff minimum is achieved at ®(/) or ®(i + 7)

Consistency and Density always hold.
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Construction of 7-synchronizing set A

How to ensure sparsity?
» The hash function ¢ should guarantee probability O(1/7) of i being included in A.

How to make ¢ efficiently computable using few quantum queries?

» We need only ability to distinguish substrings with Q(7) overlap: an adaptation of
Deterministic Sampling [Vishkin'91] gives us this guarantee.

» To further speed up computability we structure ¢ such that one can find the minimal
hash value in a tournament tree-like fashion.

By using quantum minimum finding for

h level btain th i T
each level, we obtain the recursion | T‘/b []/T/b | Tm T‘/b |

T(r)=Vb-(T(r/b)+ O(v/7)) - O(log7)
— 71/2+0(1) 0000 0000
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