
Quantum Speed-ups for String Synchronizing Sets, Longest

Common Substring, and k-mismatch Matching

Ce Jin1 Jakob Nogler2

1MIT

2ETH Zurich

March 15, 2024

1 / 15



Overview

Our contribution are quantum speed-ups for several string problems:

• Input string S given as a quantum oracle Os : |i , b⟩ 7→ |i , b ⊕ S [i ]⟩

• Stronger than a classical oracle since queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

2 / 15



Overview

Our contribution are quantum speed-ups for several string problems:

• Input string S given as a quantum oracle Os : |i , b⟩ 7→ |i , b ⊕ S [i ]⟩

• Stronger than a classical oracle since queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

2 / 15



Overview

Our contribution are quantum speed-ups for several string problems:

• Input string S given as a quantum oracle Os : |i , b⟩ 7→ |i , b ⊕ S [i ]⟩

• Stronger than a classical oracle since queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

2 / 15



Overview

Our contribution are quantum speed-ups for several string problems:

• Input string S given as a quantum oracle Os : |i , b⟩ 7→ |i , b ⊕ S [i ]⟩

• Stronger than a classical oracle since queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

2 / 15



Overview

Our contribution are quantum speed-ups for several string problems:

• Input string S given as a quantum oracle Os : |i , b⟩ 7→ |i , b ⊕ S [i ]⟩

• Stronger than a classical oracle since queries can be made in superposition

• Query complexity Q(n): counts number of queries to oracle

• Time complexity T (n): also counts the number of elementary gates

2 / 15



Longest Common Substring (LCS) Problem

Input: two strings S1, S2 ∈ Σn

Output: maximum length d such that S1[i . . i + d − 1] = S2[j . . j + d − 1] for some i , j

b a c b c a c b b a c a b a n a n a n a s c b a b c b b b a aS1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b aS2

d = 9

Well studied in classical settings:

• Linear-time algorithm via suffix tree (Weiner’73, Farach’97)

• Time-space trade-off (SV’13, KSV’14, BGKK’20)

• Dynamic data structures (ACPR’19, ACPR’20, CGP’20)

• Small-alphabet input (CKPR’21)

3 / 15



Longest Common Substring (LCS) Problem

Input: two strings S1, S2 ∈ Σn

Output: maximum length d such that S1[i . . i + d − 1] = S2[j . . j + d − 1] for some i , j

b a c b c a c b b a c a b a n a n a n a s c b a b c b b b a aS1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b aS2

d = 9

Well studied in classical settings:

• Linear-time algorithm via suffix tree (Weiner’73, Farach’97)

• Time-space trade-off (SV’13, KSV’14, BGKK’20)

• Dynamic data structures (ACPR’19, ACPR’20, CGP’20)

• Small-alphabet input (CKPR’21)

3 / 15



Longest Common Substring (LCS) Problem

Input: two strings S1, S2 ∈ Σn

Output: maximum length d such that S1[i . . i + d − 1] = S2[j . . j + d − 1] for some i , j

b a c b c a c b b a c a b a n a n a n a s c b a b c b b b a aS1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b aS2

d = 9

Well studied in classical settings:

• Linear-time algorithm via suffix tree (Weiner’73, Farach’97)

• Time-space trade-off (SV’13, KSV’14, BGKK’20)

• Dynamic data structures (ACPR’19, ACPR’20, CGP’20)

• Small-alphabet input (CKPR’21)

3 / 15



Longest Common Substring (LCS) Problem

Input: two strings S1, S2 ∈ Σn

Output: maximum length d such that S1[i . . i + d − 1] = S2[j . . j + d − 1] for some i , j

b a c b c a c b b a c a b a n a n a n a s c b a b c b b b a aS1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b aS2

d = 9

Well studied in classical settings:

• Linear-time algorithm via suffix tree (Weiner’73, Farach’97)

• Time-space trade-off (SV’13, KSV’14, BGKK’20)

• Dynamic data structures (ACPR’19, ACPR’20, CGP’20)

• Small-alphabet input (CKPR’21)

3 / 15



Longest Common Substring (LCS) Problem

Input: two strings S1, S2 ∈ Σn

Output: maximum length d such that S1[i . . i + d − 1] = S2[j . . j + d − 1] for some i , j

b a c b c a c b b a c a b a n a n a n a s c b a b c b b b a aS1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b aS2

d = 9

Well studied in classical settings:

• Linear-time algorithm via suffix tree (Weiner’73, Farach’97)

• Time-space trade-off (SV’13, KSV’14, BGKK’20)

• Dynamic data structures (ACPR’19, ACPR’20, CGP’20)

• Small-alphabet input (CKPR’21)

3 / 15



Longest Common Substring (LCS) Problem

Input: two strings S1, S2 ∈ Σn

Output: maximum length d such that S1[i . . i + d − 1] = S2[j . . j + d − 1] for some i , j

b a c b c a c b b a c a b a n a n a n a s c b a b c b b b a aS1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b aS2

d = 9

Well studied in classical settings:

• Linear-time algorithm via suffix tree (Weiner’73, Farach’97)

• Time-space trade-off (SV’13, KSV’14, BGKK’20)

• Dynamic data structures (ACPR’19, ACPR’20, CGP’20)

• Small-alphabet input (CKPR’21)

3 / 15



Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 ≤ d ≤ n: does LCS(S1,S2) ≥ d hold?

1 n1/3 n2/3 n

n1/2

n2/3

n5/6

Threshold d

T
im

e

LCS with threshold1 LCS1

Le Gall and Seddighin (ITCS’22) Õ(min{n2/3 · d1/2, n/d1/2})

Õ(n5/6)

Akmal and Jin (SODA’22) Õ(n2/3) Õ(n2/3)

4 / 15



Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 ≤ d ≤ n: does LCS(S1,S2) ≥ d hold?

1 n1/3 n2/3 n

n1/2

n2/3

n5/6

Threshold d

T
im

e

LCS with threshold1 LCS1

Le Gall and Seddighin (ITCS’22) Õ(min{n2/3 · d1/2, n/d1/2})

Õ(n5/6)

Akmal and Jin (SODA’22) Õ(n2/3) Õ(n2/3)

1Quantum query complexity and time complexity
4 / 15



Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 ≤ d ≤ n: does LCS(S1,S2) ≥ d hold?

1 n1/3 n2/3 n

n1/2

n2/3

n5/6

Threshold d

T
im

e

LCS with threshold1 LCS1

Le Gall and Seddighin (ITCS’22) Õ(min{n2/3 · d1/2, n/d1/2}) Õ(n5/6)

Akmal and Jin (SODA’22) Õ(n2/3) Õ(n2/3)

1Quantum query complexity and time complexity
4 / 15



Quantum algorithms for LCS

Binary search on decisional problem with threshold 1 ≤ d ≤ n: does LCS(S1,S2) ≥ d hold?

1 n1/3 n2/3 n

n1/2

n2/3

n5/6

Threshold d

T
im

e

LCS with threshold1 LCS1

Le Gall and Seddighin (ITCS’22) Õ(min{n2/3 · d1/2, n/d1/2}) Õ(n5/6)

Akmal and Jin (SODA’22) Õ(n2/3) Õ(n2/3)

1Quantum query complexity and time complexity
4 / 15



LCS with threshold

d = 1

(Bipartite) Element Distinctness

• Are there i , j such that S1[i ] = S2[j ]?

• Q(n) = Θ(n2/3)

• Tight lower bound for [AJ’22]

d = n

Unstructured Search

• Does S1[i ] = S2[i ] hold for all i ∈ [n]?

• Q(n) = Θ(
√
n)

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS’11]

Deciding LCS with threshold d requires Ω(n2/3/d1/6) quantum queries.

5 / 15



LCS with threshold

d = 1

(Bipartite) Element Distinctness
• Are there i , j such that S1[i ] = S2[j ]?

• Q(n) = Θ(n2/3)

• Tight lower bound for [AJ’22]

d = n

Unstructured Search

• Does S1[i ] = S2[i ] hold for all i ∈ [n]?

• Q(n) = Θ(
√
n)

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS’11]

Deciding LCS with threshold d requires Ω(n2/3/d1/6) quantum queries.

5 / 15



LCS with threshold

d = 1

(Bipartite) Element Distinctness
• Are there i , j such that S1[i ] = S2[j ]?

• Q(n) = Θ(n2/3)

• Tight lower bound for [AJ’22]

d = n

Unstructured Search

• Does S1[i ] = S2[i ] hold for all i ∈ [n]?

• Q(n) = Θ(
√
n)

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS’11]

Deciding LCS with threshold d requires Ω(n2/3/d1/6) quantum queries.

5 / 15



LCS with threshold

d = 1

(Bipartite) Element Distinctness
• Are there i , j such that S1[i ] = S2[j ]?

• Q(n) = Θ(n2/3)

• Tight lower bound for [AJ’22]

d = n

Unstructured Search

• Does S1[i ] = S2[i ] hold for all i ∈ [n]?

• Q(n) = Θ(
√
n)

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS’11]

Deciding LCS with threshold d requires Ω(n2/3/d1/6) quantum queries.

5 / 15



LCS with threshold

d = 1

(Bipartite) Element Distinctness
• Are there i , j such that S1[i ] = S2[j ]?

• Q(n) = Θ(n2/3)

• Tight lower bound for [AJ’22]

d = n

Unstructured Search

• Does S1[i ] = S2[i ] hold for all i ∈ [n]?

• Q(n) = Θ(
√
n)

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS’11]

Deciding LCS with threshold d requires Ω(n2/3/d1/6) quantum queries.

5 / 15



LCS with threshold

d = 1

(Bipartite) Element Distinctness
• Are there i , j such that S1[i ] = S2[j ]?

• Q(n) = Θ(n2/3)

• Tight lower bound for [AJ’22]

d = n

Unstructured Search

• Does S1[i ] = S2[i ] hold for all i ∈ [n]?

• Q(n) = Θ(
√
n)

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS’11]

Deciding LCS with threshold d requires Ω(n2/3/d1/6) quantum queries.

5 / 15



LCS with threshold

d = 1

(Bipartite) Element Distinctness
• Are there i , j such that S1[i ] = S2[j ]?

• Q(n) = Θ(n2/3)

• Tight lower bound for [AJ’22]

d = n

Unstructured Search

• Does S1[i ] = S2[i ] hold for all i ∈ [n]?

• Q(n) = Θ(
√
n)

By composing the two problems for the intermediate case 1 < d < n we obtain:

Theorem (quantum query lower bound), based on [BHKKLS’11]

Deciding LCS with threshold d requires Ω(n2/3/d1/6) quantum queries.

5 / 15



Our results for LCS with threshold

Theorem (an almost-tight upper bound) [Jin & N’23]

Given S1, S2 ∈ Σn, there is a quantum algorithm that determines whether LCS(S1,S2) ≥ d
holds in

Õ(n2/3/d1/6−o(1))

quantum query and time complexity.

1 n1/3 n2/3 n

n1/2

n2/3

n5/6

Threshold d

T
im

e

Le Gall and Seddighin (ITCS’22)

Akmal and Jin (SODA’22)

6 / 15



Our results for LCS with threshold

Theorem (an almost-tight upper bound) [Jin & N’23]

Given S1, S2 ∈ Σn, there is a quantum algorithm that determines whether LCS(S1,S2) ≥ d
holds in

Õ(n2/3/d1/6−o(1))

quantum query and time complexity.

1 n1/3 n2/3 n

n1/2

n2/3

n5/6

Threshold d

T
im

e

Le Gall and Seddighin (ITCS’22)

Akmal and Jin (SODA’22)

6 / 15



Our results for LCS with threshold

Theorem (an almost-tight upper bound) [Jin & N’23]

Given S1, S2 ∈ Σn, there is a quantum algorithm that determines whether LCS(S1,S2) ≥ d
holds in

Õ(n2/3/d1/6−o(1))

quantum query and time complexity.

1 n1/3 n2/3 n

n1/2

n2/3

n5/6

Threshold d

T
im

e

Le Gall and Seddighin (ITCS’22)

Akmal and Jin (SODA’22)
This work

6 / 15



LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1, S2) ≥ d , then S1 and S2 must have a length-d
common substring anchored by C.

b a c b c a a b a n a n a n a s c b a c b b a c b c b b b a a · · ·· · ·S1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a · · ·· · ·S2

At least one common position must be included in C

Theorem [Akmal & Jin’22]

Given a size-m anchor set such that the i-th anchor can be reported in T quantum time, we
can decide LCS(S1, S2) ≥ d in Õ(m2/3 · (

√
d + T )) quantum time.

➤ [CKPR’21]: Such an anchor set for LCS can be constructed from String Synchronizing
Sets [KK’19].

➤ Classical construction of synchronizing sets is slow.

7 / 15



LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1, S2) ≥ d , then S1 and S2 must have a length-d
common substring anchored by C.

b a c b c a a b a n a n a n a s c b a c b b a c b c b b b a a · · ·· · ·S1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a · · ·· · ·S2

At least one common position must be included in C

Theorem [Akmal & Jin’22]

Given a size-m anchor set such that the i-th anchor can be reported in T quantum time, we
can decide LCS(S1, S2) ≥ d in Õ(m2/3 · (

√
d + T )) quantum time.

➤ [CKPR’21]: Such an anchor set for LCS can be constructed from String Synchronizing
Sets [KK’19].

➤ Classical construction of synchronizing sets is slow.

7 / 15



LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1, S2) ≥ d , then S1 and S2 must have a length-d
common substring anchored by C.

b a c b c a a b a n a n a n a s c b a c b b a c b c b b b a a · · ·· · ·S1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a · · ·· · ·S2

At least one common position must be included in C

Theorem [Akmal & Jin’22]

Given a size-m anchor set such that the i-th anchor can be reported in T quantum time, we
can decide LCS(S1, S2) ≥ d in Õ(m2/3 · (

√
d + T )) quantum time.

➤ [CKPR’21]: Such an anchor set for LCS can be constructed from String Synchronizing
Sets [KK’19].

➤ Classical construction of synchronizing sets is slow.

7 / 15



LCS via Anchoring Technique

An anchor set C should satisfy: if LCS(S1, S2) ≥ d , then S1 and S2 must have a length-d
common substring anchored by C.

b a c b c a a b a n a n a n a s c b a c b b a c b c b b b a a · · ·· · ·S1
b c b a a a b b a n a n a n a s b c a a b a c c a c b c a b a · · ·· · ·S2

At least one common position must be included in C

Theorem [Akmal & Jin’22]

Given a size-m anchor set such that the i-th anchor can be reported in T quantum time, we
can decide LCS(S1, S2) ≥ d in Õ(m2/3 · (

√
d + T )) quantum time.

➤ [CKPR’21]: Such an anchor set for LCS can be constructed from String Synchronizing
Sets [KK’19].

➤ Classical construction of synchronizing sets is slow.
7 / 15



Our results

String Synchronizing Sets

LCS with threshold Data Structure for LCE Queries

k-mismatch Matching Problem

8 / 15



Our results

String Synchronizing Sets

LCS with threshold

Data Structure for LCE Queries

k-mismatch Matching Problem

8 / 15



Our results

String Synchronizing Sets

LCS with threshold Data Structure for LCE Queries

k-mismatch Matching Problem

8 / 15



Our results

String Synchronizing Sets

LCS with threshold Data Structure for LCE Queries

k-mismatch Matching Problem

8 / 15



String Synchronizing Sets [Kempa & Kociumaka’19]

For a string T [1 . . n] and a positive integer 1 ≤ τ ≤ n/2, we say A ⊆ [1 . . n − 2τ + 1] is a
τ -synchronizing set of T if it satisfies the following properties:

• Consistency: If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ A if and only if j ∈ A.
• Density: For i ∈ [1 . . n − 3τ + 2], A ∩ [i . . i + τ) = ∅ if and only if

per(T [i . . i + 3τ − 2]) ≤ τ/3.

b a c b c a a a a a a a a a a a a a a a b b b b c a c b c a a a · · ·· · ·T

consistency

highly periodic region density

Example: τ = 3
red: positions in A

9 / 15



String Synchronizing Sets [Kempa & Kociumaka’19]

For a string T [1 . . n] and a positive integer 1 ≤ τ ≤ n/2, we say A ⊆ [1 . . n − 2τ + 1] is a
τ -synchronizing set of T if it satisfies the following properties:

• Consistency: If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ A if and only if j ∈ A.

• Density: For i ∈ [1 . . n − 3τ + 2], A ∩ [i . . i + τ) = ∅ if and only if
per(T [i . . i + 3τ − 2]) ≤ τ/3.

b a c b c a a a a a a a a a a a a a a a b b b b c a c b c a a a · · ·· · ·T

consistency

highly periodic region density

Example: τ = 3
red: positions in A

9 / 15



String Synchronizing Sets [Kempa & Kociumaka’19]

For a string T [1 . . n] and a positive integer 1 ≤ τ ≤ n/2, we say A ⊆ [1 . . n − 2τ + 1] is a
τ -synchronizing set of T if it satisfies the following properties:

• Consistency: If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ A if and only if j ∈ A.

• Density: For i ∈ [1 . . n − 3τ + 2], A ∩ [i . . i + τ) = ∅ if and only if
per(T [i . . i + 3τ − 2]) ≤ τ/3.

b a c b c a a a a a a a a a a a a a a a b b b b c a c b c a a a · · ·· · ·T

consistency

highly periodic region density

Example: τ = 3
red: positions in A

9 / 15



String Synchronizing Sets [Kempa & Kociumaka’19]

For a string T [1 . . n] and a positive integer 1 ≤ τ ≤ n/2, we say A ⊆ [1 . . n − 2τ + 1] is a
τ -synchronizing set of T if it satisfies the following properties:

• Consistency: If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ A if and only if j ∈ A.
• Density: For i ∈ [1 . . n − 3τ + 2], A ∩ [i . . i + τ) = ∅ if and only if

per(T [i . . i + 3τ − 2]) ≤ τ/3.

b a c b c a a a a a a a a a a a a a a a b b b b c a c b c a a a · · ·· · ·T

consistency

highly periodic region density

Example: τ = 3
red: positions in A

9 / 15



String Synchronizing Sets [Kempa & Kociumaka’19]

For a string T [1 . . n] and a positive integer 1 ≤ τ ≤ n/2, we say A ⊆ [1 . . n − 2τ + 1] is a
τ -synchronizing set of T if it satisfies the following properties:

• Consistency: If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ A if and only if j ∈ A.
• Density: For i ∈ [1 . . n − 3τ + 2], A ∩ [i . . i + τ) = ∅ if and only if

per(T [i . . i + 3τ − 2]) ≤ τ/3.

b a c b c a a a a a a a a a a a a a a a b b b b c a c b c a a a · · ·· · ·T

consistency

highly periodic region density

Example: τ = 3
red: positions in A

9 / 15



Our Result for String Synchronizing Sets

We want (ideally):
• Sparsity: small size A = O(n/τ).
• Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N’23]

There exists a (randomized) τ -synchronizing set A of size n/τ1−o(1), such that given an i we

can reported each element of A∩ [i . . i + τ ] in Õ(τ
1
2
+o(1)) quantum query and time complexity.

Techniques: [KK’19] + Divide & Conquer + quantum minimum finding + [Vishkin’91]

Many recent applications in classical string algorithms:

• Sublinear-time Burrows-Wheeler Transform [KK’19]
• Optimal LCE data structure [KK’19]
• Longest Common Substring [CKPR’21]
• Dynamic & Compressed suffix arrays [KK’22], [KK’23]

10 / 15



Our Result for String Synchronizing Sets

We want (ideally):
• Sparsity: small size A = O(n/τ).
• Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N’23]

There exists a (randomized) τ -synchronizing set A of size n/τ1−o(1), such that given an i we

can reported each element of A∩ [i . . i + τ ] in Õ(τ
1
2
+o(1)) quantum query and time complexity.

Techniques: [KK’19] + Divide & Conquer + quantum minimum finding + [Vishkin’91]

Many recent applications in classical string algorithms:

• Sublinear-time Burrows-Wheeler Transform [KK’19]
• Optimal LCE data structure [KK’19]
• Longest Common Substring [CKPR’21]
• Dynamic & Compressed suffix arrays [KK’22], [KK’23]

10 / 15



Our Result for String Synchronizing Sets

We want (ideally):
• Sparsity: small size A = O(n/τ).
• Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N’23]

There exists a (randomized) τ -synchronizing set A of size n/τ1−o(1), such that given an i we

can reported each element of A∩ [i . . i + τ ] in Õ(τ
1
2
+o(1)) quantum query and time complexity.

Techniques: [KK’19] + Divide & Conquer + quantum minimum finding + [Vishkin’91]

Many recent applications in classical string algorithms:

• Sublinear-time Burrows-Wheeler Transform [KK’19]
• Optimal LCE data structure [KK’19]
• Longest Common Substring [CKPR’21]
• Dynamic & Compressed suffix arrays [KK’22], [KK’23]

10 / 15



Our Result for String Synchronizing Sets

We want (ideally):
• Sparsity: small size A = O(n/τ).
• Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N’23]

There exists a (randomized) τ -synchronizing set A of size n/τ1−o(1), such that given an i we

can reported each element of A∩ [i . . i + τ ] in Õ(τ
1
2
+o(1)) quantum query and time complexity.

Techniques: [KK’19] + Divide & Conquer + quantum minimum finding + [Vishkin’91]

Many recent applications in classical string algorithms:

• Sublinear-time Burrows-Wheeler Transform [KK’19]
• Optimal LCE data structure [KK’19]
• Longest Common Substring [CKPR’21]
• Dynamic & Compressed suffix arrays [KK’22], [KK’23]

10 / 15



Our Result for String Synchronizing Sets

We want (ideally):
• Sparsity: small size A = O(n/τ).
• Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N’23]

There exists a (randomized) τ -synchronizing set A of size n/τ1−o(1), such that given an i we

can reported each element of A∩ [i . . i + τ ] in Õ(τ
1
2
+o(1)) quantum query and time complexity.

Techniques: [KK’19] + Divide & Conquer + quantum minimum finding + [Vishkin’91]

Many recent applications in classical string algorithms:
• Sublinear-time Burrows-Wheeler Transform [KK’19]

• Optimal LCE data structure [KK’19]
• Longest Common Substring [CKPR’21]
• Dynamic & Compressed suffix arrays [KK’22], [KK’23]

10 / 15



Our Result for String Synchronizing Sets

We want (ideally):
• Sparsity: small size A = O(n/τ).
• Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N’23]

There exists a (randomized) τ -synchronizing set A of size n/τ1−o(1), such that given an i we

can reported each element of A∩ [i . . i + τ ] in Õ(τ
1
2
+o(1)) quantum query and time complexity.

Techniques: [KK’19] + Divide & Conquer + quantum minimum finding + [Vishkin’91]

Many recent applications in classical string algorithms:
• Sublinear-time Burrows-Wheeler Transform [KK’19]
• Optimal LCE data structure [KK’19]

• Longest Common Substring [CKPR’21]
• Dynamic & Compressed suffix arrays [KK’22], [KK’23]

10 / 15



Our Result for String Synchronizing Sets

We want (ideally):
• Sparsity: small size A = O(n/τ).
• Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N’23]

There exists a (randomized) τ -synchronizing set A of size n/τ1−o(1), such that given an i we

can reported each element of A∩ [i . . i + τ ] in Õ(τ
1
2
+o(1)) quantum query and time complexity.

Techniques: [KK’19] + Divide & Conquer + quantum minimum finding + [Vishkin’91]

Many recent applications in classical string algorithms:
• Sublinear-time Burrows-Wheeler Transform [KK’19]
• Optimal LCE data structure [KK’19]
• Longest Common Substring [CKPR’21]

• Dynamic & Compressed suffix arrays [KK’22], [KK’23]

10 / 15



Our Result for String Synchronizing Sets

We want (ideally):
• Sparsity: small size A = O(n/τ).
• Efficient Computability: fast reporting time of an element of A.

Theorem [Jin & N’23]

There exists a (randomized) τ -synchronizing set A of size n/τ1−o(1), such that given an i we

can reported each element of A∩ [i . . i + τ ] in Õ(τ
1
2
+o(1)) quantum query and time complexity.

Techniques: [KK’19] + Divide & Conquer + quantum minimum finding + [Vishkin’91]

Many recent applications in classical string algorithms:
• Sublinear-time Burrows-Wheeler Transform [KK’19]
• Optimal LCE data structure [KK’19]
• Longest Common Substring [CKPR’21]
• Dynamic & Compressed suffix arrays [KK’22], [KK’23]

10 / 15



Data Structure for LCE Queries

Input: T ∈ Σn and i , j ∈ [n]
Output: length of the longest common prefix of T [i . . n] and T [j . . n]

Theorem [Jin & N’23], based on [KK’19]

Given an integer 1 ≤ τ ≤ n/2 there is a quantum algorithm such that:

• it outputs in Tprep = Õ(n/τ
1
2
−o(1)) a data structure D (with classical representation).

• Given quantum random access to D, we can answer LCE queries in Tans = Õ(
√
τ)

quantum time.

Tprep = 0, Tans = Õ(
√
n) Tprep = O(n), Tans = O(1)

Tradeoff: (Tprep +
√
n) · (Tans + 1) ≥ Ω̃(n)

11 / 15



Data Structure for LCE Queries

Input: T ∈ Σn and i , j ∈ [n]
Output: length of the longest common prefix of T [i . . n] and T [j . . n]

Theorem [Jin & N’23], based on [KK’19]

Given an integer 1 ≤ τ ≤ n/2 there is a quantum algorithm such that:

• it outputs in Tprep = Õ(n/τ
1
2
−o(1)) a data structure D (with classical representation).

• Given quantum random access to D, we can answer LCE queries in Tans = Õ(
√
τ)

quantum time.

Tprep = 0, Tans = Õ(
√
n) Tprep = O(n), Tans = O(1)

Tradeoff: (Tprep +
√
n) · (Tans + 1) ≥ Ω̃(n)

11 / 15



Data Structure for LCE Queries

Input: T ∈ Σn and i , j ∈ [n]
Output: length of the longest common prefix of T [i . . n] and T [j . . n]

Theorem [Jin & N’23], based on [KK’19]

Given an integer 1 ≤ τ ≤ n/2 there is a quantum algorithm such that:

• it outputs in Tprep = Õ(n/τ
1
2
−o(1)) a data structure D (with classical representation).

• Given quantum random access to D, we can answer LCE queries in Tans = Õ(
√
τ)

quantum time.

Tprep = 0, Tans = Õ(
√
n) Tprep = O(n), Tans = O(1)

Tradeoff: (Tprep +
√
n) · (Tans + 1) ≥ Ω̃(n)

11 / 15



Data Structure for LCE Queries

Input: T ∈ Σn and i , j ∈ [n]
Output: length of the longest common prefix of T [i . . n] and T [j . . n]

Theorem [Jin & N’23], based on [KK’19]

Given an integer 1 ≤ τ ≤ n/2 there is a quantum algorithm such that:

• it outputs in Tprep = Õ(n/τ
1
2
−o(1)) a data structure D (with classical representation).

• Given quantum random access to D, we can answer LCE queries in Tans = Õ(
√
τ)

quantum time.

Tprep = 0, Tans = Õ(
√
n) Tprep = O(n), Tans = O(1)

Tradeoff: (Tprep +
√
n) · (Tans + 1) ≥ Ω̃(n)

11 / 15



Data Structure for LCE Queries

Input: T ∈ Σn and i , j ∈ [n]
Output: length of the longest common prefix of T [i . . n] and T [j . . n]

Theorem [Jin & N’23], based on [KK’19]

Given an integer 1 ≤ τ ≤ n/2 there is a quantum algorithm such that:

• it outputs in Tprep = Õ(n/τ
1
2
−o(1)) a data structure D (with classical representation).

• Given quantum random access to D, we can answer LCE queries in Tans = Õ(
√
τ)

quantum time.

Tprep = 0, Tans = Õ(
√
n) Tprep = O(n), Tans = O(1)

Tradeoff: (Tprep +
√
n) · (Tans + 1) ≥ Ω̃(n)

11 / 15



The (Hamming) k-mismatch Matching Problem

Input: a text T ∈ Σn, a pattern P ∈ Σm, and a threshold k ∈ [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Ω(
√
kn)

[Bringmann, Künnemann & Wellnitz’19] [Charalampopoulus, Kociumaka & Wellnitz’20]
⇒ Structural insights: either there are few matches or P is almost periodic.

Theorem [CKW’20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

(ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
Õ(

√
km) quantum time and query complexity.

12 / 15



The (Hamming) k-mismatch Matching Problem

Input: a text T ∈ Σn, a pattern P ∈ Σm, and a threshold k ∈ [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Ω(
√
kn)

[Bringmann, Künnemann & Wellnitz’19] [Charalampopoulus, Kociumaka & Wellnitz’20]
⇒ Structural insights: either there are few matches or P is almost periodic.

Theorem [CKW’20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

(ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
Õ(

√
km) quantum time and query complexity.

12 / 15



The (Hamming) k-mismatch Matching Problem

Input: a text T ∈ Σ2m, a pattern P ∈ Σm, and a threshold k ∈ [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Ω(
√
kn)

[Bringmann, Künnemann & Wellnitz’19] [Charalampopoulus, Kociumaka & Wellnitz’20]
⇒ Structural insights: either there are few matches or P is almost periodic.

Theorem [CKW’20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

(ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
Õ(

√
km) quantum time and query complexity.

12 / 15



The (Hamming) k-mismatch Matching Problem

Input: a text T ∈ Σ2m, a pattern P ∈ Σm, and a threshold k ∈ [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Ω(
√
kn)

[Bringmann, Künnemann & Wellnitz’19] [Charalampopoulus, Kociumaka & Wellnitz’20]
⇒ Structural insights: either there are few matches or P is almost periodic.

Theorem [CKW’20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

(ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
Õ(

√
km) quantum time and query complexity.

12 / 15



The (Hamming) k-mismatch Matching Problem

Input: a text T ∈ Σ2m, a pattern P ∈ Σm, and a threshold k ∈ [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Ω(
√
kn)

[Bringmann, Künnemann & Wellnitz’19] [Charalampopoulus, Kociumaka & Wellnitz’20]
⇒ Structural insights: either there are few matches or P is almost periodic.

Theorem [CKW’20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

(ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
Õ(

√
km) quantum time and query complexity.

12 / 15



The (Hamming) k-mismatch Matching Problem

Input: a text T ∈ Σ2m, a pattern P ∈ Σm, and a threshold k ∈ [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Ω(
√
kn)

[Bringmann, Künnemann & Wellnitz’19] [Charalampopoulus, Kociumaka & Wellnitz’20]
⇒ Structural insights: either there are few matches or P is almost periodic.

Theorem [CKW’20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

(ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
Õ(

√
km) quantum time and query complexity.

12 / 15



The (Hamming) k-mismatch Matching Problem

Input: a text T ∈ Σ2m, a pattern P ∈ Σm, and a threshold k ∈ [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Ω(
√
kn)

[Bringmann, Künnemann & Wellnitz’19] [Charalampopoulus, Kociumaka & Wellnitz’20]
⇒ Structural insights: either there are few matches or P is almost periodic.

Theorem [CKW’20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

(ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
Õ(

√
km) quantum time and query complexity.

12 / 15



The (Hamming) k-mismatch Matching Problem

Input: a text T ∈ Σ2m, a pattern P ∈ Σm, and a threshold k ∈ [m]
Output: does T contain a substring with hamming distance at most k from P?

Quantum Query Lower Bound: Ω(
√
kn)

[Bringmann, Künnemann & Wellnitz’19] [Charalampopoulus, Kociumaka & Wellnitz’20]
⇒ Structural insights: either there are few matches or P is almost periodic.

Theorem [CKW’20]

At least one of the following holds:

(i) The number of k-mismatch occurrences of P in T is O(k).

(ii) There are O(k) mismatches between P and the periodic extension of a string Q.

Their constructive algorithm for the theorem can be adapted to a quantum algorithm requiring
Õ(

√
km) quantum time and query complexity.

12 / 15



Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

T

P

candidate position

LCE query

Speed up candidate position verification through LCE data structure:

Õ( m/τ
1
2
−o(1)︸ ︷︷ ︸

Preprocessing

+
√
k · k

√
τ︸ ︷︷ ︸

Grover’s search × k LCE queries

)

(τ=m/k3/2)
= Õ(k3/4m1/2+o(1))

Case (ii): P is almost periodic.

T

P
Q Q Q Q Q Q Q

13 / 15



Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

T

P

candidate position

LCE query

Speed up candidate position verification through LCE data structure:

Õ( m/τ
1
2
−o(1)︸ ︷︷ ︸

Preprocessing

+
√
k · k

√
τ︸ ︷︷ ︸

Grover’s search × k LCE queries

)

(τ=m/k3/2)
= Õ(k3/4m1/2+o(1))

Case (ii): P is almost periodic.

T

P
Q Q Q Q Q Q Q

13 / 15



Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

T

P

candidate position

LCE query

Speed up candidate position verification through LCE data structure:

Õ( m/τ
1
2
−o(1)︸ ︷︷ ︸

Preprocessing

+
√
k · k

√
τ︸ ︷︷ ︸

Grover’s search × k LCE queries

)

(τ=m/k3/2)
= Õ(k3/4m1/2+o(1))

Case (ii): P is almost periodic.

T

P
Q Q Q Q Q Q Q

13 / 15



Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

T

P

candidate position

LCE query

Speed up candidate position verification through LCE data structure:

Õ( m/τ
1
2
−o(1)︸ ︷︷ ︸

Preprocessing

+
√
k · k

√
τ︸ ︷︷ ︸

Grover’s search × k LCE queries

)

(τ=m/k3/2)
= Õ(k3/4m1/2+o(1))

Case (ii): P is almost periodic.

T

P
Q Q Q Q Q Q Q

13 / 15



Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

T

P

candidate position

LCE query

Speed up candidate position verification through LCE data structure:

Õ( m/τ
1
2
−o(1)︸ ︷︷ ︸

Preprocessing

+
√
k · k

√
τ︸ ︷︷ ︸

Grover’s search × k LCE queries

)
(τ=m/k3/2)

= Õ(k3/4m1/2+o(1))

Case (ii): P is almost periodic.

T

P
Q Q Q Q Q Q Q

13 / 15



Handling the two Cases

Case (i): O(k) candidate positions for k-mismatch occurrences.

T

P

candidate position

LCE query

Speed up candidate position verification through LCE data structure:

Õ( m/τ
1
2
−o(1)︸ ︷︷ ︸

Preprocessing

+
√
k · k

√
τ︸ ︷︷ ︸

Grover’s search × k LCE queries

)
(τ=m/k3/2)

= Õ(k3/4m1/2+o(1))

Case (ii): P is almost periodic.

T

P
Q Q Q Q Q Q Q

13 / 15



Our Results for the k-mismatch Matching Problem

Theorem [Jin & N’23]

We can verify the existence of a k-mismatch occurrence of P in T (and report its starting
position in case it exists) in Õ(k3/4n1/2mo(1)) query complexity and Õ(k

√
n) time complexity.

Õ(k
√
n)

14 / 15



Our Results for the k-mismatch Matching Problem

Theorem [Jin & N’23]

We can verify the existence of a k-mismatch occurrence of P in T (and report its starting
position in case it exists) in Õ(k3/4n1/2mo(1)) query complexity and Õ(k

√
n) time complexity.

Õ(k
√
n)

14 / 15



Open Problems

➤ Can we improve the extra τo(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

➤ Can we improve the quantum query complexity of the k-mismatch matching algorithm to
closer to the lower bound

√
kn?

➤ Can our new result for string synchronizing sets find more applications in quantum string
algorithms?

Thank you!

15 / 15



Open Problems

➤ Can we improve the extra τo(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

➤ Can we improve the quantum query complexity of the k-mismatch matching algorithm to
closer to the lower bound

√
kn?

➤ Can our new result for string synchronizing sets find more applications in quantum string
algorithms?

Thank you!

15 / 15



Open Problems

➤ Can we improve the extra τo(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

➤ Can we improve the quantum query complexity of the k-mismatch matching algorithm to
closer to the lower bound

√
kn?

➤ Can our new result for string synchronizing sets find more applications in quantum string
algorithms?

Thank you!

15 / 15



Open Problems

➤ Can we improve the extra τo(1) factors in the sparsity and the time complexity of our
string synchronizing set to poly-logarithmic?

➤ Can we improve the quantum query complexity of the k-mismatch matching algorithm to
closer to the lower bound

√
kn?

➤ Can our new result for string synchronizing sets find more applications in quantum string
algorithms?

Thank you!

15 / 15



Construction of τ -synchronizing set A

We focus on ‘non-periodic case’: per(T [i . . i + τ ]) > τ/3 for all i

Follow [KK’19]’s framework of ‘picking local minimizers’ of a hash function ϕ:

• Choose ϕ : Στ → Z
• Denote Φ(i) = ϕ(T [i . . i + τ − 1])

T
Φ(i)

Φ(i + 1)
... · · ·

Φ(i + τ)

i i + τ i + 2τ

i ∈ A iff minimum is achieved at Φ(i) or Φ(i + τ)

Consistency and Density always hold.
16 / 15



Construction of τ -synchronizing set A

How to ensure sparsity?

➤ The hash function ϕ should guarantee probability O(1/τ) of i being included in A.

How to make ϕ efficiently computable using few quantum queries?

➤ We need only ability to distinguish substrings with Ω(τ) overlap: an adaptation of
Deterministic Sampling [Vishkin’91] gives us this guarantee.

➤ To further speed up computability we structure ϕ such that one can find the minimal
hash value in a tournament tree-like fashion.

τ

τ/b τ/b τ/b τ/b

· · ·

· · ·
· · · · · ·

By using quantum minimum finding for
each level, we obtain the recursion

T (τ) =
√
b · (T (τ/b) + Õ(

√
τ)) · O(log τ)

= τ1/2+o(1)

17 / 15


