Faster Tree Edit Distance via APSP Equivalence

Master Thesis Presentation

Jakob Nogler

Supervised by

Adam Polak (Bocconi University) David Steurer

with contributions from

Barna Saha (UC San Diego)Virginia Vassilevska Williams (MIT)Yinzhan Xu (UC San Diego)Christopher Ye (UC San Diego)

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a characters c with c' with cost $\delta(c, c')$ abcxef _________ abcyef

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a characters c with c' with cost $\delta(c, c')$ abcxef \longrightarrow abcyef

2. Delete a character c with cost $\delta(c, \varepsilon)$

abcdef _____ Delete c _____ abdef

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a characters c with c' with cost $\delta(c, c')$

 $abcxef \longrightarrow abcyef$

2. Delete a character
$$m{c}$$
 with cost $\delta(m{c},arepsilon)$

abcdef ───── Delete c → abdef

3. Insert a character c with cost $\delta(\varepsilon, c)$

abcef ______ abcxef

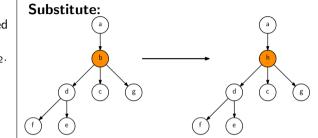
Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1 , T_2 and a cost function δ .

Output: Cheapest transformation of T_1 into T_2 .

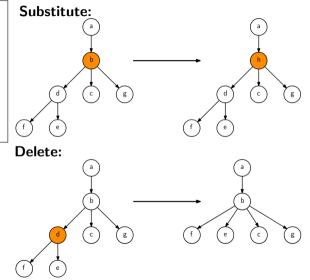
Tree Edit Distance Problem (TED) Input: Two rooted, labeled, left-to-right-ordered trees T_1 , T_2 and a cost function δ . **Output:** Cheapest transformation of T_1 into T_2 .

• Substitute v with v' with cost $\delta(v, v')$.



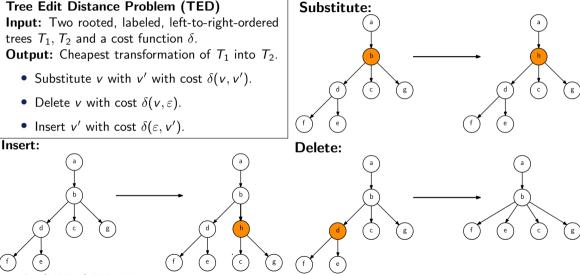
Tree Edit Distance Problem (TED) Input: Two rooted, labeled, left-to-right-ordered trees T_1 , T_2 and a cost function δ . **Output:** Cheapest transformation of T_1 into T_2 .

- Substitute v with v' with cost $\delta(v, v')$.
- Delete v with cost $\delta(v, \varepsilon)$.

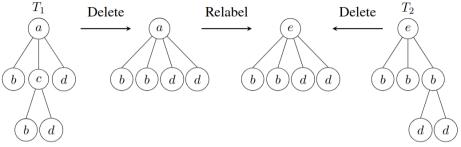


Tree Edit Distance Problem (TED) Input: Two rooted, labeled, left-to-right-ordered trees T_1 , T_2 and a cost function δ . **Output:** Cheapest transformation of T_1 into T_2 .

- Substitute v with v' with cost $\delta(v, v')$.
- Delete v with cost $\delta(v, \varepsilon)$.
- Insert v' with cost $\delta(\varepsilon, v')$.



TED reformulated



- Relabel v to v' with cost $\delta(v, v')$.
- Delete v from T_1 with cost $\delta(v, \varepsilon)$.
- Delete v' from T_2 with cost $\delta(\varepsilon, v')$.

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$

Background: Introduced by Selkow in the late 1970s. Applications in computational biology, structured data anaylsis, image processing, compiler optimization, and more.

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$

Last three fall within decomposition strategy framework formalized in [Dulucq and Touzet, 2003]. For algorithms within the framework a $\Omega(n^3)$ lower bound exists.

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-arepsilon})$ algo under APSP

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-arepsilon})$ algo under APSP
2022	Mao	unweighted	$O(n^{2.9546})$
2023	Dürr	unweighted	$\mathcal{O}(n^{2.9148})$

Background: Introduced by Selkow in the late 1970s. Applications in computational biology, structured data anaylsis, image processing, compiler optimization, and more.

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-arepsilon})$ algo under APSP
2022	Мао	unweighted	$O(n^{2.9546})$
2023	Dürr	unweighted	$\mathcal{O}(n^{2.9148})$

Question 1: is there a $o(n^3)$ algorithm for (weighted) TED?

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

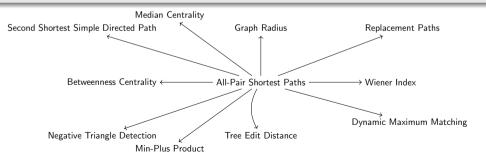
All-Pair Shortest Paths Tree Edit Distance

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

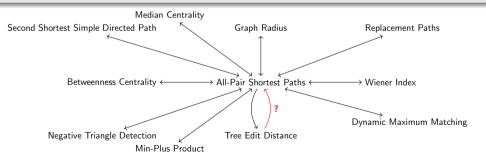


All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture



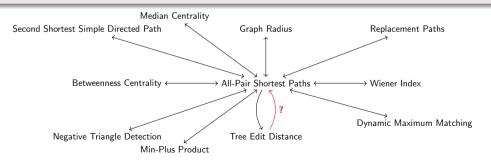
All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

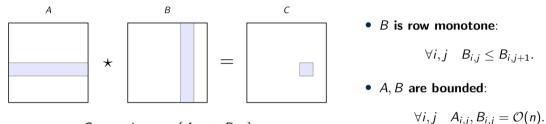
There is no algorithm for APSP running in time $\mathcal{O}(n^{3-\varepsilon})$ for any $\varepsilon > 0$.



Question 2: is TED equivalent to APSP?

Key component to achieve truly subcubic algorithms for unweighted TED:

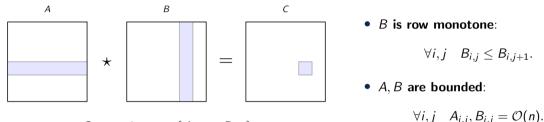
Monotone Min-plus Product



$$C_{i,j} = \min_{1 \le k \le n} \{A_{i,k} + B_{k,j}\}$$

Key component to achieve truly subcubic algorithms for unweighted TED:

Monotone Min-plus Product

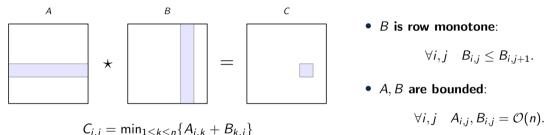


$$C_{i,j} = \min_{1 \le k \le n} \{A_{i,k} + B_{k,j}\}$$

Chi, Duan, Xie, Zhang '22: $T_{MonMUL} = O(n^{(\omega+3)/2}) = O(n^{2.687}).$

Key component to achieve truly subcubic algorithms for unweighted TED:

Monotone Min-plus Product

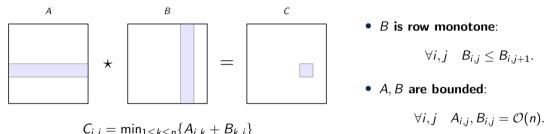


Chi, Duan, Xie, Zhang '22: $T_{MonMUL} = \mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687}).$

Algorithms for unweighted TED of Mao & Dürr lose factors in the exponent and use other techniques that only apply to the unweighted case.

Key component to achieve truly subcubic algorithms for unweighted TED:

Monotone Min-plus Product



Chi, Duan, Xie, Zhang '22: $T_{MonMUL} = \mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687}).$

Algorithms for unweighted TED of Mao & Dürr lose factors in the exponent and use other techniques that only apply to the unweighted case.

Question 3: is there a $\mathcal{O}(n^{(\omega+3)/2})$ algorithm for unweighted TED?

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{APSP}(n) + n^{2+o(1)})$.

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{APSP}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{APSP}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{\text{APSP}}(n) = n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{APSP}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{APSP}(n) = n^3 / 2^{\Omega(\sqrt{\log n})}$.

Theorem 2

There is an algorithm for TED running in time $n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{APSP}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{APSP}(n) = n^3 / 2^{\Omega(\sqrt{\log n})}$.

Theorem 2

There is an algorithm for TED running in time $n^3/2^{\Omega(\sqrt{\log n})}$.

Question 1: is there a $o(n^3)$ algorithm for (weighted) TED? \checkmark

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{APSP}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{APSP}(n) = n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 2

There is an algorithm for TED running in time $n^3/2^{\Omega(\sqrt{\log n})}$.

Question 1: is there a $o(n^3)$ algorithm for (weighted) TED? \checkmark

Theorem 3

There is an algorithm for unweighted TED running in time $\mathcal{O}(T_{\text{MonMUL}}(n) + n^{2+o(1)})$.

Chi, Duan, Xie, Zhang '22: $T_{MonMUL} = \mathcal{O}(n^{(\omega+3)/2})$.

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{APSP}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{APSP}(n) = n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 2

There is an algorithm for TED running in time $n^3/2^{\Omega(\sqrt{\log n})}$.

Question 1: is there a $o(n^3)$ algorithm for (weighted) TED? \checkmark

Theorem 3

There is an algorithm for unweighted TED running in time $\mathcal{O}(T_{\text{MonMUL}}(n) + n^{2+o(1)})$.

Chi, Duan, Xie, Zhang '22: $T_{MonMUL} = O(n^{(\omega+3)/2})$.

Question 3: is there a $\mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687})$ algorithm for unweighted TED? \checkmark

Year	Work	Setting	Complexity
1979 1989 1998 2007	Tai Shasha, Zhang Klein Demaine, Mozes, Rossman, Weimann	weighted weighted weighted weighted	$\mathcal{O}(n^{6})$ $\mathcal{O}(n^{4})$ $\mathcal{O}(n^{3} \log n)$ $\mathcal{O}(n^{3})$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-\varepsilon})$ algo under APSP $n^{3}/2^{\Omega(\sqrt{\log n})}$
2024	This work	weighted	$n^{3}/2^{2}(\sqrt{\log n})$
2022 2023 2024	Mao Dürr This work	unweighted unweighted unweighted	$\mathcal{O}(n^{2.9546})$ $\mathcal{O}(n^{2.9148})$ $\mathcal{O}(n^{2.687})$

Sketch of the Reduction

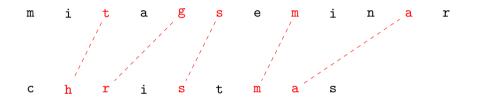
Similarity of Strings

Instead of computing the edit distance between two strings $A = a_1 \cdots a_n$, $B = b_1 \cdots b_n$, we compute the similarity between A, B.

 $\eta(a_i, b_j) \coloneqq \delta(a_i, \varepsilon) + \delta(\varepsilon, b_j) - \delta(a_i, b_j)$ "how much I save by substituting a_i with b_j "

Similarity of Strings

Instead of computing the edit distance between two strings $A = a_1 \cdots a_n$, $B = b_1 \cdots b_n$, we compute the similarity between A, B.

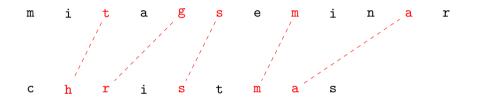


 $\eta(a_i, b_j) \coloneqq \delta(a_i, \varepsilon) + \delta(\varepsilon, b_j) - \delta(a_i, b_j)$ "how much I save by substituting a_i with b_j "

$$sim(A,B) \coloneqq \max_{\substack{i_1 < \dots < i_k \in [1 \dots n] \\ j_1 < \dots < j_k \in [1 \dots n]}} \left\{ \eta(a_{i_1}, b_{j_1}) + \eta(a_{i_2}, b_{j_2}) + \dots + \eta(a_{i_k}, b_{j_k}) \right\}.$$
 "max I can save"

Similarity of Strings

Instead of computing the edit distance between two strings $A = a_1 \cdots a_n$, $B = b_1 \cdots b_n$, we compute the similarity between A, B.

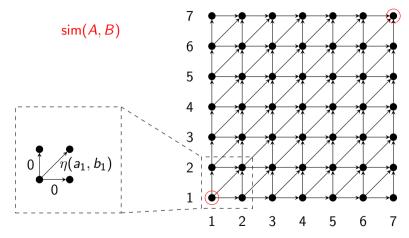


 $\eta(a_i, b_j) \coloneqq \delta(a_i, \varepsilon) + \delta(\varepsilon, b_j) - \delta(a_i, b_j)$ "how much I save by substituting a_i with b_j "

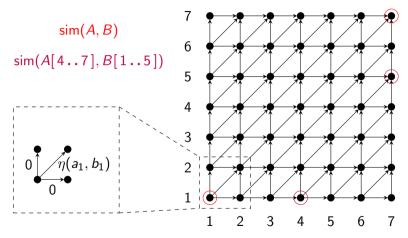
$$sim(A,B) \coloneqq \max_{\substack{i_1 < \dots < i_k \in [1 \dots n] \\ j_1 < \dots < j_k \in [1 \dots n]}} \Big\{ \eta(a_{i_1}, b_{j_1}) + \eta(a_{i_2}, b_{j_2}) + \dots + \eta(a_{i_k}, b_{j_k}) \Big\}. \quad \text{``max I can save''}$$

$$sim(A,B) = \sum_{i} \delta(a_{i},\varepsilon) + \sum_{j} \delta(\varepsilon,b_{j}) - ed(A,B).$$

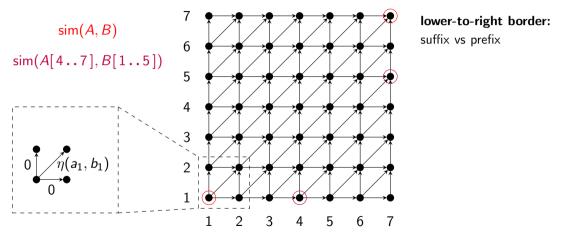
The string alignment graph summarizes the DP scheme computing the similarity.



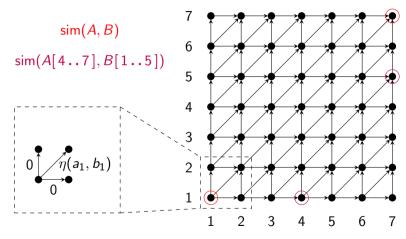
The string alignment graph summarizes the DP scheme computing the similarity.



The string alignment graph summarizes the DP scheme computing the similarity.



The string alignment graph summarizes the DP scheme computing the similarity.



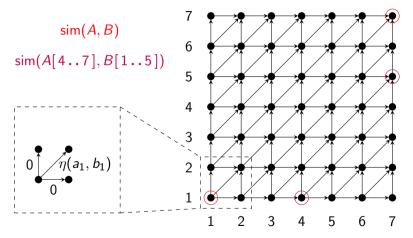
lower-to-right border: suffix vs prefix

lower-to-upper border: infix vs whole

left-to-right border: whole vs infix

lower-to-right border: prefix vs suffix

The string alignment graph summarizes the DP scheme computing the similarity.



lower-to-right border: suffix vs prefix

lower-to-upper border: infix vs whole

left-to-right border: whole vs infix

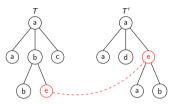
lower-to-right border: prefix vs suffix

 $\mathcal{O}(n^2)$ to compute all

Bedtime reading: "Semi-local string comparison: algorithmic techniques and applications" by Alexander Tiskin

Similarity of Trees

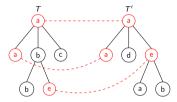
We compute the similarity between T and T'.



 $\eta(\mathbf{v},\mathbf{v}') \coloneqq \delta(\mathbf{v},\varepsilon) + \delta(\varepsilon,\mathbf{v}') - \delta(\mathbf{v},\mathbf{v}')$ "how much I save by substituting \mathbf{v} with \mathbf{v}' "

Similarity of Trees

We compute the similarity between T and T'.



 $\eta(\mathbf{v},\mathbf{v}') \coloneqq \delta(\mathbf{v},\varepsilon) + \delta(\varepsilon,\mathbf{v}') - \delta(\mathbf{v},\mathbf{v}') \quad \text{``how much I save by substituting } \mathbf{v} \text{ with } \mathbf{v}''$

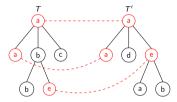
sim(T, T') = "maximum weight of similarity matching"

Condition on similarity matching: for any two matched vertices (v, v') and (u, u')

- v is an ancestor of u in T if and only if v' is an ancestor of u' in T',
- v comes before u in the pre-order of T if and only if v' comes before u' in the pre-order of T'.

Similarity of Trees

We compute the similarity between T and T'.



 $\eta(\mathbf{v},\mathbf{v}') \coloneqq \delta(\mathbf{v},\varepsilon) + \delta(\varepsilon,\mathbf{v}') - \delta(\mathbf{v},\mathbf{v}') \quad \text{``how much I save by substituting } \mathbf{v} \text{ with } \mathbf{v}''$

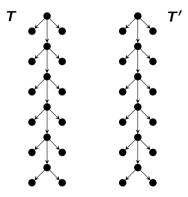
sim(T, T') = "maximum weight of similarity matching"

Condition on similarity matching: for any two matched vertices (v, v') and (u, u')

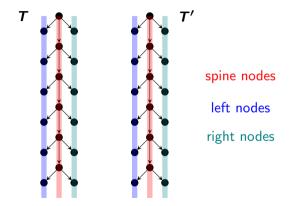
- v is an ancestor of u in T if and only if v' is an ancestor of u' in T',
- v comes before u in the pre-order of T if and only if v' comes before u' in the pre-order of T'.

$$sim(T, T') = \sum_{v \in T} \delta(v, \varepsilon) + \sum_{v' \in T'} \delta(\varepsilon, v') - ted(T, T').$$

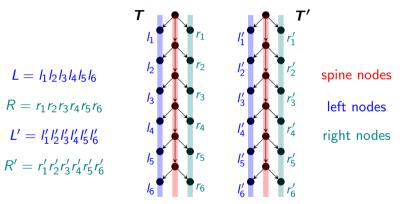
Let us start by computing the TED between two caterpillar trees...



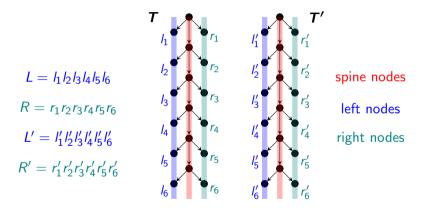
Let us start by computing the TED between two caterpillar trees...



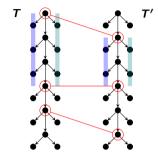
Let us start by computing the TED between two caterpillar trees...



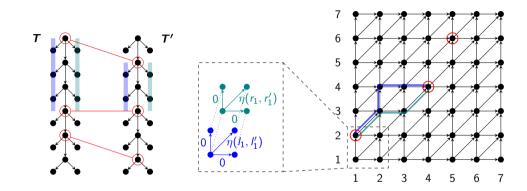
Let us start by computing the TED between two caterpillar trees...

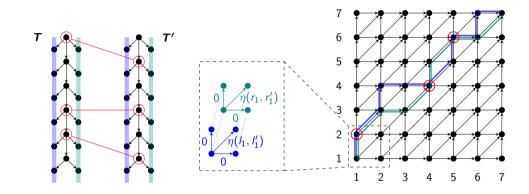


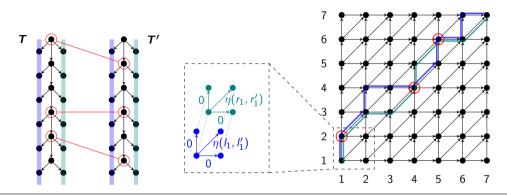
...with the assumption that spine, left and right nodes of T only match with nodes of their same type (color) in T', respectively.



7	•	٠	٠	٠	٠	٠	•
6	•	٠	٠	٠	$oldsymbol{O}$	٠	٠
5	•	•	٠	•	•	•	٠
4	•	•	٠	$oldsymbol{O}$	٠	•	٠
3	•	•	•	•	٠	•	•
2	$oldsymbol{O}$	•	٠	•	٠	•	٠
1	•	•	٠	•	•	•	•
	1	2	3	4	5	6	7

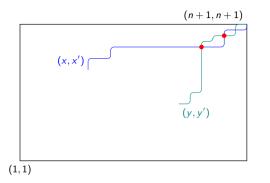




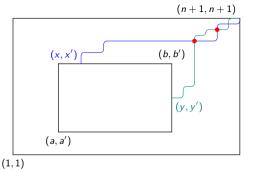


sim(T, T') equals to the maximum achievable sum of:

- 1. the weight of a path from (1,1) to (n+1, n+1) in the alignment graph of sim(L, L');
- 2. the weight of a path from (1,1) to (n+1, n+1) in the alignment graph of sim(R, R'); and
- 3. values $\eta(c_i, c'_{i'})$ for (i, i') where the two paths intersect (each c_i and $c'_{i'}$ appears at most once).



- 1. the weight of a path from (x, x') to (n + 1, n + 1) in the alignment graph of sim(L, L');
- 2. the weight of a path from (y, y') to (n + 1, n + 1) in the alignment graph of sim(R, R'); and
- 3. values $\eta(c_i, c'_{i'})$ for (i, i') where the two paths intersect (each c_i and $c'_{i'}$ appears at most once).



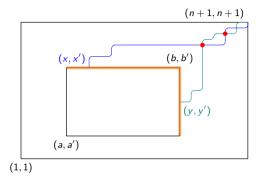
Divide et Conquer Scheme

Input:

• The lower-left corner (*a*, *a*') and upper-right corner (*b*, *b*') of a rectangle.

Output:

- 1. the weight of a path from (x, x') to (n + 1, n + 1) in the alignment graph of sim(L, L');
- 2. the weight of a path from (y, y') to (n + 1, n + 1) in the alignment graph of sim(R, R'); and
- 3. values $\eta(c_i, c'_{i'})$ for (i, i') where the two paths intersect (each c_i and $c'_{i'}$ appears at most once).



Divide et Conquer Scheme

Input:

• The lower-left corner (*a*, *a*') and upper-right corner (*b*, *b*') of a rectangle.

•
$$sim((x, x'), (y, y'))$$

 $\forall (x, x'), (y, y') \in ([a . . b] \times \{b'\}) \cup (\{b\} \times [a' . . b']).$

Output:

- 1. the weight of a path from (x, x') to (n + 1, n + 1) in the alignment graph of sim(L, L');
- 2. the weight of a path from (y, y') to (n + 1, n + 1) in the alignment graph of sim(R, R'); and
- 3. values $\eta(c_i, c'_{i'})$ for (i, i') where the two paths intersect (each c_i and $c'_{i'}$ appears at most once).



Divide et Conquer Scheme

Input:

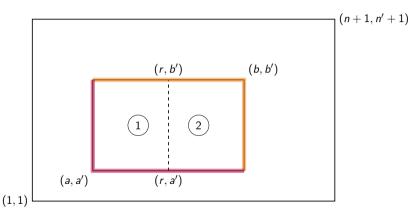
- The lower-left corner (*a*, *a*') and upper-right corner (*b*, *b*') of a rectangle.
- $sim((x, x'), (y, y')) \\ \forall (x, x'), (y, y') \in ([a . . b] \times \{b'\}) \cup (\{b\} \times [a' . . b']).$

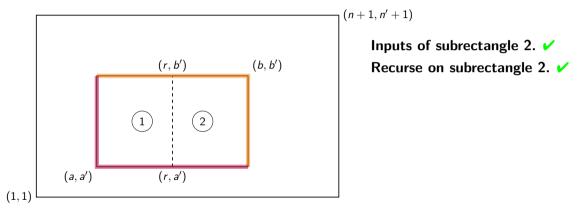
Output:

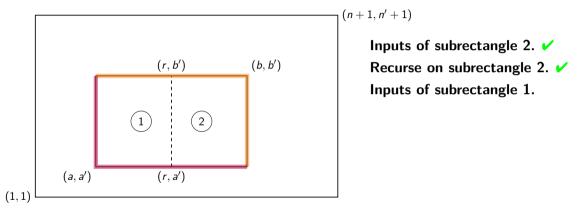
•
$$sim((x, x'), (y, y'))$$

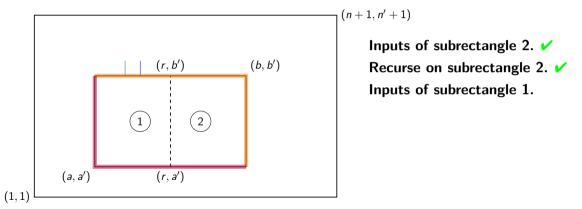
 $\forall (x, x'), (y, y') \in ([a . . b] \times \{a'\}) \cup (\{a\} \times [a' . . b']).$

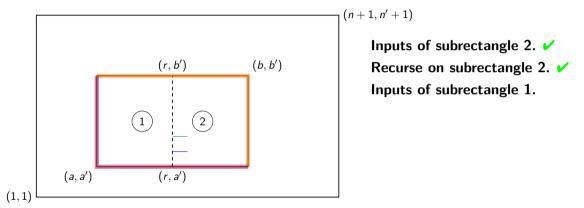
- 1. the weight of a path from (x, x') to (n + 1, n + 1) in the alignment graph of sim(L, L');
- 2. the weight of a path from (y, y') to (n + 1, n + 1) in the alignment graph of sim(R, R'); and
- 3. values $\eta(c_i, c'_{i'})$ for (i, i') where the two paths intersect (each c_i and $c'_{i'}$ appears at most once).

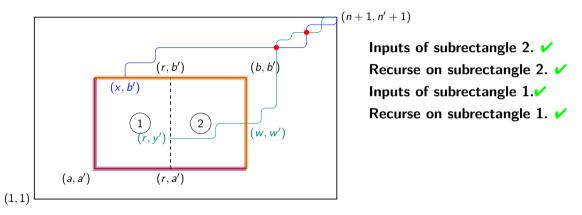




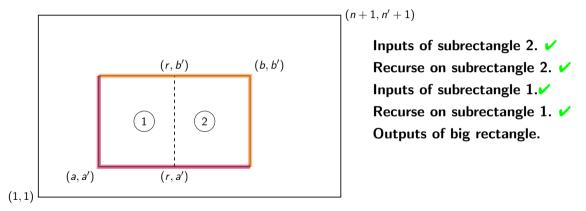


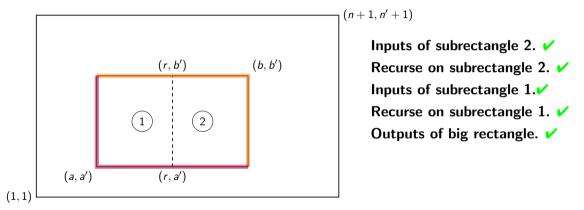






$$sim((x,b'),(r,y')) = \max_{(w,w')} \left\{ sim(R[r \cdot \cdot w), R'[y' \cdot \cdot w']) + sim((x,b'),(w,w')) \right\}.$$





Since we can handle vertical "cuts", we can also handle horizontal "cuts".

Since we can handle vertical "cuts", we can also handle horizontal "cuts".

Since we can handle vertical "cuts", we can also handle horizontal "cuts".

We obtain the recurrence

 $T(n) = 4T(n/2) + \mathcal{O}(T_{\text{APSP}}).$

Since we can handle vertical "cuts", we can also handle horizontal "cuts".

We obtain the recurrence

$$T(n) = 4T(n/2) + \mathcal{O}(T_{\text{APSP}}).$$

Thus, $T(n) = O(T_{APSP})$ assuming $T_{APSP} = O(n^{2+\varepsilon})$ for some $\varepsilon > 0$.

Since we can handle vertical "cuts", we can also handle horizontal "cuts".

We obtain the recurrence

$$T(n) = 4T(n/2) + \mathcal{O}(T_{\text{APSP}}).$$

Thus,
$$T(n) = O(T_{APSP})$$
 assuming $T_{APSP} = O(n^{2+\varepsilon})$ for some $\varepsilon > 0$.

I cheated a bit... in the scheme I need to remember whether spines nodes are already mapped.

A Divide and Conquer Scheme for TED on Caterpillar Trees III

Since we can handle vertical "cuts", we can also handle horizontal "cuts".

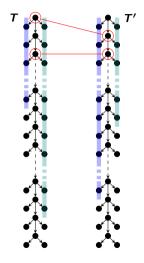
We obtain the recurrence

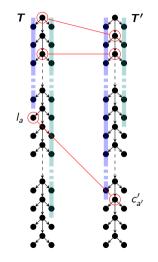
$$T(n) = 4T(n/2) + \mathcal{O}(T_{\text{APSP}}).$$

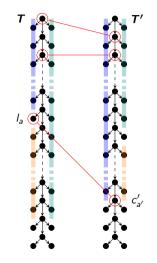
Thus,
$$T(n) = O(T_{APSP})$$
 assuming $T_{APSP} = O(n^{2+\varepsilon})$ for some $\varepsilon > 0$.

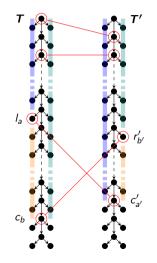
I cheated a bit... in the scheme I need to remember whether spines nodes are already mapped.

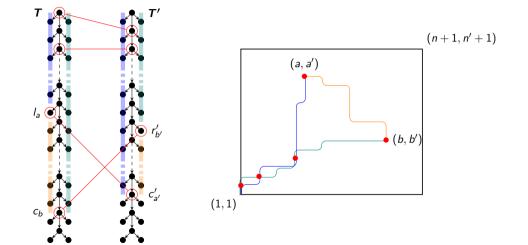
Q: How to drop the assumption that spines, left and right nodes map only nodes of the same type?







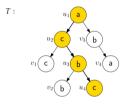


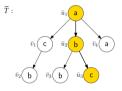


We generalize TED on caterpillar trees to Spine Edit Distance.

We generalize TED on caterpillar trees to Spine Edit Distance.

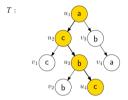
Input: trees T, T', root-to-leaf paths $S \subseteq T, S' \subseteq T'$, and $sim(sub(v), sub(v')) \quad \forall (v, v') \in (T \times T') \setminus (S \times S')$.

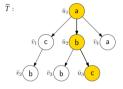




We generalize TED on caterpillar trees to Spine Edit Distance.

Input: trees T, T', root-to-leaf paths $S \subseteq T, S' \subseteq T'$, and $sim(sub(v), sub(v')) \quad \forall (v, v') \in (T \times T') \setminus (S \times S').$





Output: sim(sub(v), sub(v')) $\forall (v, v') \in S \times S'$.

We generalize TED on caterpillar trees to Spine Edit Distance.

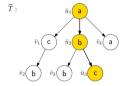
Input: trees T, T', root-to-leaf paths $S \subseteq T, S' \subseteq T'$, and $sim(sub(v), sub(v')) \quad \forall (v, v') \in (T \times T') \setminus (S \times S')$.

Output: sim(sub(v), sub(v')) $\forall (v, v') \in S \times S'$.

T:

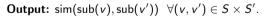
Why?

- There are still spine, left, and right nodes.
- The underlying paths are not in string alignment graphs anymore but in forest alignment graphs.



We generalize TED on caterpillar trees to Spine Edit Distance.

 $\textbf{Input: trees } \mathcal{T}, \mathcal{T}', \text{ root-to-leaf paths } S \subseteq \mathcal{T}, S' \subseteq \mathcal{T}', \text{ and } sim(sub(v), sub(v')) \ \forall (v, v') \in (\mathcal{T} \times \mathcal{T}') \setminus (S \times S').$

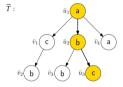


T:

Why?

- There are still spine, left, and right nodes.
- The underlying paths are not in string alignment graphs anymore but in forest alignment graphs.

We also prove that TED on arbitrary trees is fine-grained equivalent to Spine Edit Distance.



Thanks!