
Faster Tree Edit Distance via APSP Equivalence
Master Thesis Presentation

Jakob Nogler

Supervised by

Adam Polak (Bocconi University) David Steurer

with contributions from

Barna Saha (UC San Diego) Virginia Vassilevska Williams (MIT)
Yinzhan Xu (UC San Diego) Christopher Ye (UC San Diego)

1 / 21

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a characters c with c ′ with cost δ(c , c ′)

abcxef abcyef
Substitute x with y

2. Delete a character c with cost δ(c, ε)

abcdef abdef
Delete c

3. Insert a character c with cost δ(ε, c)

abcef abcxef
Insert x

2 / 21

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a characters c with c ′ with cost δ(c , c ′)

abcxef abcyef
Substitute x with y

2. Delete a character c with cost δ(c, ε)

abcdef abdef
Delete c

3. Insert a character c with cost δ(ε, c)

abcef abcxef
Insert x

2 / 21

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a characters c with c ′ with cost δ(c , c ′)

abcxef abcyef
Substitute x with y

2. Delete a character c with cost δ(c, ε)

abcdef abdef
Delete c

3. Insert a character c with cost δ(ε, c)

abcef abcxef
Insert x

2 / 21

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a characters c with c ′ with cost δ(c , c ′)

abcxef abcyef
Substitute x with y

2. Delete a character c with cost δ(c, ε)

abcdef abdef
Delete c

3. Insert a character c with cost δ(ε, c)

abcef abcxef
Insert x

2 / 21

Tree Edit Distance (TED)

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered
trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2.

• Substitute v with v ′ with cost δ(v , v ′).

• Delete v with cost δ(v , ε).

• Insert v ′ with cost δ(ε, v ′).

Insert:

Images from Seddighin, Seddighin 2019

Substitute:

Delete:

3 / 21

Tree Edit Distance (TED)

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered
trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2.

• Substitute v with v ′ with cost δ(v , v ′).

• Delete v with cost δ(v , ε).

• Insert v ′ with cost δ(ε, v ′).

Insert:

Images from Seddighin, Seddighin 2019

Substitute:

Delete:

3 / 21

Tree Edit Distance (TED)

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered
trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2.

• Substitute v with v ′ with cost δ(v , v ′).

• Delete v with cost δ(v , ε).

• Insert v ′ with cost δ(ε, v ′).

Insert:

Images from Seddighin, Seddighin 2019

Substitute:

Delete:

3 / 21

Tree Edit Distance (TED)

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered
trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2.

• Substitute v with v ′ with cost δ(v , v ′).

• Delete v with cost δ(v , ε).

• Insert v ′ with cost δ(ε, v ′).

Insert:

Images from Seddighin, Seddighin 2019

Substitute:

Delete:

3 / 21

TED reformulated

Image from Mao 2022

• Relabel v to v ′ with cost δ(v , v ′).

• Delete v from T1 with cost δ(v , ε).

• Delete v ′ from T2 with cost δ(ε, v ′).

4 / 21

Algorithms for Tree Edit Distance

Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data anaylsis, image processing, compiler optimization, and more.

Year Work Setting Complexity

1979 Tai weighted O(n6)

1989 Shasha, Zhang weighted O(n4)
1998 Klein weighted O(n3 log n)
2007 Demaine, Mozes, Rossman, Weimann weighted O(n3)
2020 Bringmann, Gawrychowski, Mozes, Weinmann weighted no O(n3−ε) algo under APSP

2022 Mao unweighted O(n2.9546)
2023 Dürr unweighted O(n2.9148)

Last three fall within decomposition strategy framework formalized in [Dulucq and Touzet, 2003].
For algorithms within the framework a Ω(n3) lower bound exists.

Question 1: is there a o(n3) algorithm for (weighted) TED?

5 / 21

Algorithms for Tree Edit Distance

Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data anaylsis, image processing, compiler optimization, and more.

Year Work Setting Complexity

1979 Tai weighted O(n6)

1989 Shasha, Zhang weighted O(n4)
1998 Klein weighted O(n3 log n)
2007 Demaine, Mozes, Rossman, Weimann weighted O(n3)
2020 Bringmann, Gawrychowski, Mozes, Weinmann weighted no O(n3−ε) algo under APSP

2022 Mao unweighted O(n2.9546)
2023 Dürr unweighted O(n2.9148)

Last three fall within decomposition strategy framework formalized in [Dulucq and Touzet, 2003].
For algorithms within the framework a Ω(n3) lower bound exists.

Question 1: is there a o(n3) algorithm for (weighted) TED?

5 / 21

Algorithms for Tree Edit Distance

Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data anaylsis, image processing, compiler optimization, and more.

Year Work Setting Complexity

1979 Tai weighted O(n6)
1989 Shasha, Zhang weighted O(n4)
1998 Klein weighted O(n3 log n)
2007 Demaine, Mozes, Rossman, Weimann weighted O(n3)

2020 Bringmann, Gawrychowski, Mozes, Weinmann weighted no O(n3−ε) algo under APSP

2022 Mao unweighted O(n2.9546)
2023 Dürr unweighted O(n2.9148)

Last three fall within decomposition strategy framework formalized in [Dulucq and Touzet, 2003].
For algorithms within the framework a Ω(n3) lower bound exists.

Question 1: is there a o(n3) algorithm for (weighted) TED?

5 / 21

Algorithms for Tree Edit Distance

Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data anaylsis, image processing, compiler optimization, and more.

Year Work Setting Complexity

1979 Tai weighted O(n6)
1989 Shasha, Zhang weighted O(n4)
1998 Klein weighted O(n3 log n)
2007 Demaine, Mozes, Rossman, Weimann weighted O(n3)

2020 Bringmann, Gawrychowski, Mozes, Weinmann weighted no O(n3−ε) algo under APSP

2022 Mao unweighted O(n2.9546)
2023 Dürr unweighted O(n2.9148)

Last three fall within decomposition strategy framework formalized in [Dulucq and Touzet, 2003].
For algorithms within the framework a Ω(n3) lower bound exists.

Question 1: is there a o(n3) algorithm for (weighted) TED?

5 / 21

Algorithms for Tree Edit Distance

Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data anaylsis, image processing, compiler optimization, and more.

Year Work Setting Complexity

1979 Tai weighted O(n6)
1989 Shasha, Zhang weighted O(n4)
1998 Klein weighted O(n3 log n)
2007 Demaine, Mozes, Rossman, Weimann weighted O(n3)
2020 Bringmann, Gawrychowski, Mozes, Weinmann weighted no O(n3−ε) algo under APSP

2022 Mao unweighted O(n2.9546)
2023 Dürr unweighted O(n2.9148)

Last three fall within decomposition strategy framework formalized in [Dulucq and Touzet, 2003].
For algorithms within the framework a Ω(n3) lower bound exists.

Question 1: is there a o(n3) algorithm for (weighted) TED?

5 / 21

Algorithms for Tree Edit Distance

Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data anaylsis, image processing, compiler optimization, and more.

Year Work Setting Complexity

1979 Tai weighted O(n6)
1989 Shasha, Zhang weighted O(n4)
1998 Klein weighted O(n3 log n)
2007 Demaine, Mozes, Rossman, Weimann weighted O(n3)
2020 Bringmann, Gawrychowski, Mozes, Weinmann weighted no O(n3−ε) algo under APSP

2022 Mao unweighted O(n2.9546)
2023 Dürr unweighted O(n2.9148)

Last three fall within decomposition strategy framework formalized in [Dulucq and Touzet, 2003].
For algorithms within the framework a Ω(n3) lower bound exists.

Question 1: is there a o(n3) algorithm for (weighted) TED?

5 / 21

Algorithms for Tree Edit Distance

Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data anaylsis, image processing, compiler optimization, and more.

Year Work Setting Complexity

1979 Tai weighted O(n6)
1989 Shasha, Zhang weighted O(n4)
1998 Klein weighted O(n3 log n)
2007 Demaine, Mozes, Rossman, Weimann weighted O(n3)
2020 Bringmann, Gawrychowski, Mozes, Weinmann weighted no O(n3−ε) algo under APSP

2022 Mao unweighted O(n2.9546)
2023 Dürr unweighted O(n2.9148)

Last three fall within decomposition strategy framework formalized in [Dulucq and Touzet, 2003].
For algorithms within the framework a Ω(n3) lower bound exists.

Question 1: is there a o(n3) algorithm for (weighted) TED?
5 / 21

The Fine-grained Complexity of Tree Edit Distance

All-Pair Shortest Path Problem (APSP)
Input: A weighted and directed graph G .
Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time O(n3−ε) for any ε > 0.

All-Pair Shortest Paths

Tree Edit Distance

Graph RadiusSecond Shortest Simple Directed Path Replacement Paths

Betweenness Centrality

Median Centrality

Wiener Index

Dynamic Maximum Matching

Min-Plus Product

Negative Triangle Detection

?

Question 2: is TED equivalent to APSP?

6 / 21

The Fine-grained Complexity of Tree Edit Distance

All-Pair Shortest Path Problem (APSP)
Input: A weighted and directed graph G .
Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time O(n3−ε) for any ε > 0.

All-Pair Shortest Paths

Tree Edit Distance

Graph RadiusSecond Shortest Simple Directed Path Replacement Paths

Betweenness Centrality

Median Centrality

Wiener Index

Dynamic Maximum Matching

Min-Plus Product

Negative Triangle Detection

?

Question 2: is TED equivalent to APSP?

6 / 21

The Fine-grained Complexity of Tree Edit Distance

All-Pair Shortest Path Problem (APSP)
Input: A weighted and directed graph G .
Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time O(n3−ε) for any ε > 0.

All-Pair Shortest Paths

Tree Edit Distance

Graph RadiusSecond Shortest Simple Directed Path Replacement Paths

Betweenness Centrality

Median Centrality

Wiener Index

Dynamic Maximum Matching

Min-Plus Product

Negative Triangle Detection

?

Question 2: is TED equivalent to APSP?

6 / 21

The Fine-grained Complexity of Tree Edit Distance

All-Pair Shortest Path Problem (APSP)
Input: A weighted and directed graph G .
Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time O(n3−ε) for any ε > 0.

All-Pair Shortest Paths

Tree Edit Distance

Graph RadiusSecond Shortest Simple Directed Path Replacement Paths

Betweenness Centrality

Median Centrality

Wiener Index

Dynamic Maximum Matching

Min-Plus Product

Negative Triangle Detection

?

Question 2: is TED equivalent to APSP?

6 / 21

The Fine-grained Complexity of Tree Edit Distance

All-Pair Shortest Path Problem (APSP)
Input: A weighted and directed graph G .
Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time O(n3−ε) for any ε > 0.

All-Pair Shortest Paths

Tree Edit Distance

Graph RadiusSecond Shortest Simple Directed Path Replacement Paths

Betweenness Centrality

Median Centrality

Wiener Index

Dynamic Maximum Matching

Min-Plus Product

Negative Triangle Detection

?

Question 2: is TED equivalent to APSP?

6 / 21

The Fine-grained Complexity of Tree Edit Distance

All-Pair Shortest Path Problem (APSP)
Input: A weighted and directed graph G .
Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time O(n3−ε) for any ε > 0.

All-Pair Shortest Paths

Tree Edit Distance

Graph RadiusSecond Shortest Simple Directed Path Replacement Paths

Betweenness Centrality

Median Centrality

Wiener Index

Dynamic Maximum Matching

Min-Plus Product

Negative Triangle Detection

?

Question 2: is TED equivalent to APSP? 6 / 21

Unweighted Tree Edit Distance

Key component to achieve truly subcubic algorithms for unweighted TED:

Monotone Min-plus Product
A

⋆

B

=

C

Ci,j = min1≤k≤n{Ai,k + Bk,j}

• B is row monotone:

∀i , j Bi,j ≤ Bi,j+1.

• A,B are bounded:

∀i , j Ai,j ,Bi,j = O(n).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2) = O(n2.687).

Algorithms for unweighted TED of Mao & Dürr lose factors in the exponent and use other techniques
that only apply to the unweighted case.

Question 3: is there a O(n(ω+3)/2) algorithm for unweighted TED?

7 / 21

Unweighted Tree Edit Distance

Key component to achieve truly subcubic algorithms for unweighted TED:

Monotone Min-plus Product
A

⋆

B

=

C

Ci,j = min1≤k≤n{Ai,k + Bk,j}

• B is row monotone:

∀i , j Bi,j ≤ Bi,j+1.

• A,B are bounded:

∀i , j Ai,j ,Bi,j = O(n).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2) = O(n2.687).

Algorithms for unweighted TED of Mao & Dürr lose factors in the exponent and use other techniques
that only apply to the unweighted case.

Question 3: is there a O(n(ω+3)/2) algorithm for unweighted TED?

7 / 21

Unweighted Tree Edit Distance

Key component to achieve truly subcubic algorithms for unweighted TED:

Monotone Min-plus Product
A

⋆

B

=

C

Ci,j = min1≤k≤n{Ai,k + Bk,j}

• B is row monotone:

∀i , j Bi,j ≤ Bi,j+1.

• A,B are bounded:

∀i , j Ai,j ,Bi,j = O(n).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2) = O(n2.687).

Algorithms for unweighted TED of Mao & Dürr lose factors in the exponent and use other techniques
that only apply to the unweighted case.

Question 3: is there a O(n(ω+3)/2) algorithm for unweighted TED?

7 / 21

Unweighted Tree Edit Distance

Key component to achieve truly subcubic algorithms for unweighted TED:

Monotone Min-plus Product
A

⋆

B

=

C

Ci,j = min1≤k≤n{Ai,k + Bk,j}

• B is row monotone:

∀i , j Bi,j ≤ Bi,j+1.

• A,B are bounded:

∀i , j Ai,j ,Bi,j = O(n).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2) = O(n2.687).

Algorithms for unweighted TED of Mao & Dürr lose factors in the exponent and use other techniques
that only apply to the unweighted case.

Question 3: is there a O(n(ω+3)/2) algorithm for unweighted TED?
7 / 21

Results

Theorem 1

There is an algorithm for TED running in time O(TAPSP(n) + n2+o(1)).

Question 2: is TED equivalent to APSP? ✔

Williams ’18: TAPSP(n) = n3/2Ω(
√
log n).

Theorem 2

There is an algorithm for TED running in time n3/2Ω(
√
log n).

Question 1: is there a o(n3) algorithm for (weighted) TED? ✔

Theorem 3

There is an algorithm for unweighted TED running in time O(TMonMUL(n) + n2+o(1)).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2).

Question 3: is there a O(n(ω+3)/2) = O(n2.687) algorithm for unweighted TED? ✔

8 / 21

Results

Theorem 1

There is an algorithm for TED running in time O(TAPSP(n) + n2+o(1)).

Question 2: is TED equivalent to APSP? ✔

Williams ’18: TAPSP(n) = n3/2Ω(
√
log n).

Theorem 2

There is an algorithm for TED running in time n3/2Ω(
√
log n).

Question 1: is there a o(n3) algorithm for (weighted) TED? ✔

Theorem 3

There is an algorithm for unweighted TED running in time O(TMonMUL(n) + n2+o(1)).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2).

Question 3: is there a O(n(ω+3)/2) = O(n2.687) algorithm for unweighted TED? ✔

8 / 21

Results

Theorem 1

There is an algorithm for TED running in time O(TAPSP(n) + n2+o(1)).

Question 2: is TED equivalent to APSP? ✔

Williams ’18: TAPSP(n) = n3/2Ω(
√
log n).

Theorem 2

There is an algorithm for TED running in time n3/2Ω(
√
log n).

Question 1: is there a o(n3) algorithm for (weighted) TED? ✔

Theorem 3

There is an algorithm for unweighted TED running in time O(TMonMUL(n) + n2+o(1)).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2).

Question 3: is there a O(n(ω+3)/2) = O(n2.687) algorithm for unweighted TED? ✔

8 / 21

Results

Theorem 1

There is an algorithm for TED running in time O(TAPSP(n) + n2+o(1)).

Question 2: is TED equivalent to APSP? ✔

Williams ’18: TAPSP(n) = n3/2Ω(
√
log n).

Theorem 2

There is an algorithm for TED running in time n3/2Ω(
√
log n).

Question 1: is there a o(n3) algorithm for (weighted) TED? ✔

Theorem 3

There is an algorithm for unweighted TED running in time O(TMonMUL(n) + n2+o(1)).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2).

Question 3: is there a O(n(ω+3)/2) = O(n2.687) algorithm for unweighted TED? ✔

8 / 21

Results

Theorem 1

There is an algorithm for TED running in time O(TAPSP(n) + n2+o(1)).

Question 2: is TED equivalent to APSP? ✔

Williams ’18: TAPSP(n) = n3/2Ω(
√
log n).

Theorem 2

There is an algorithm for TED running in time n3/2Ω(
√
log n).

Question 1: is there a o(n3) algorithm for (weighted) TED? ✔

Theorem 3

There is an algorithm for unweighted TED running in time O(TMonMUL(n) + n2+o(1)).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2).

Question 3: is there a O(n(ω+3)/2) = O(n2.687) algorithm for unweighted TED? ✔

8 / 21

Results

Theorem 1

There is an algorithm for TED running in time O(TAPSP(n) + n2+o(1)).

Question 2: is TED equivalent to APSP? ✔

Williams ’18: TAPSP(n) = n3/2Ω(
√
log n).

Theorem 2

There is an algorithm for TED running in time n3/2Ω(
√
log n).

Question 1: is there a o(n3) algorithm for (weighted) TED? ✔

Theorem 3

There is an algorithm for unweighted TED running in time O(TMonMUL(n) + n2+o(1)).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2).

Question 3: is there a O(n(ω+3)/2) = O(n2.687) algorithm for unweighted TED? ✔

8 / 21

Results

Theorem 1

There is an algorithm for TED running in time O(TAPSP(n) + n2+o(1)).

Question 2: is TED equivalent to APSP? ✔

Williams ’18: TAPSP(n) = n3/2Ω(
√
log n).

Theorem 2

There is an algorithm for TED running in time n3/2Ω(
√
log n).

Question 1: is there a o(n3) algorithm for (weighted) TED? ✔

Theorem 3

There is an algorithm for unweighted TED running in time O(TMonMUL(n) + n2+o(1)).

Chi, Duan, Xie, Zhang ’22: TMonMUL = O(n(ω+3)/2).

Question 3: is there a O(n(ω+3)/2) = O(n2.687) algorithm for unweighted TED? ✔
8 / 21

Algorithms for Tree Edit Distance (Updated)

Year Work Setting Complexity

1979 Tai weighted O(n6)
1989 Shasha, Zhang weighted O(n4)
1998 Klein weighted O(n3 log n)
2007 Demaine, Mozes, Rossman, Weimann weighted O(n3)
2020 Bringmann, Gawrychowski, Mozes, Weinmann weighted no O(n3−ε) algo under APSP

2024 This work weighted n3/2Ω(
√

log n)

2022 Mao unweighted O(n2.9546)
2023 Dürr unweighted O(n2.9148)
2024 This work unweighted O(n2.687)

9 / 21

Sketch of the Reduction

10 / 21

Similarity of Strings

Instead of computing the edit distance between two strings A = a1 · · · an, B = b1 · · · bn, we
compute the similarity between A,B.

m i t

t

a g s

s

e m

m

i n a

a

r

c h

h

r i s

s

t m

m

a

a

s

η(ai , bj) := δ(ai , ε) + δ(ε, bj)− δ(ai , bj) “how much I save by substituting ai with bj”

sim(A,B) := maxi1<···<ik∈[1 . . n]
j1<···<jk∈[1 . . n]

{
η(ai1 , bj1)+η(ai2 , bj2)+ · · ·+η(aik , bjk)

}
. “max I can save”

sim(A,B) =
∑

i δ(ai , ε) +
∑

j δ(ε, bj)− ed(A,B).

11 / 21

Similarity of Strings

Instead of computing the edit distance between two strings A = a1 · · · an, B = b1 · · · bn, we
compute the similarity between A,B.

m i

t

t a g

s

s e

m

m i n

a

a r

c

h

h r i

s

s t

m

m

a

a s

η(ai , bj) := δ(ai , ε) + δ(ε, bj)− δ(ai , bj) “how much I save by substituting ai with bj”

sim(A,B) := maxi1<···<ik∈[1 . . n]
j1<···<jk∈[1 . . n]

{
η(ai1 , bj1)+η(ai2 , bj2)+ · · ·+η(aik , bjk)

}
. “max I can save”

sim(A,B) =
∑

i δ(ai , ε) +
∑

j δ(ε, bj)− ed(A,B).

11 / 21

Similarity of Strings

Instead of computing the edit distance between two strings A = a1 · · · an, B = b1 · · · bn, we
compute the similarity between A,B.

m i

t

t a g

s

s e

m

m i n

a

a r

c

h

h r i

s

s t

m

m

a

a s

η(ai , bj) := δ(ai , ε) + δ(ε, bj)− δ(ai , bj) “how much I save by substituting ai with bj”

sim(A,B) := maxi1<···<ik∈[1 . . n]
j1<···<jk∈[1 . . n]

{
η(ai1 , bj1)+η(ai2 , bj2)+ · · ·+η(aik , bjk)

}
. “max I can save”

sim(A,B) =
∑

i δ(ai , ε) +
∑

j δ(ε, bj)− ed(A,B).
11 / 21

String Alignment Graphs

The string alignment graph summarizes the DP scheme computing the similarity.

1

1

2

3

4

5

6

7

2 3 4 5 6 7

0

0 η(a1, b1)

sim(A,B)

sim(A[4 . . 7],B[1 . . 5])

lower-to-right border:

suffix vs prefix

lower-to-upper border:

infix vs whole

left-to-right border:

whole vs infix

lower-to-right border:

prefix vs suffix

O(n2) to compute all

Bedtime reading: “Semi-local string comparison: algorithmic techniques and applications” by Alexander Tiskin

12 / 21

String Alignment Graphs

The string alignment graph summarizes the DP scheme computing the similarity.

1

1

2

3

4

5

6

7

2 3 4 5 6 7

0

0 η(a1, b1)

sim(A,B)

sim(A[4 . . 7],B[1 . . 5])

lower-to-right border:

suffix vs prefix

lower-to-upper border:

infix vs whole

left-to-right border:

whole vs infix

lower-to-right border:

prefix vs suffix

O(n2) to compute all

Bedtime reading: “Semi-local string comparison: algorithmic techniques and applications” by Alexander Tiskin

12 / 21

String Alignment Graphs

The string alignment graph summarizes the DP scheme computing the similarity.

1

1

2

3

4

5

6

7

2 3 4 5 6 7

0

0 η(a1, b1)

sim(A,B)

sim(A[4 . . 7],B[1 . . 5])

lower-to-right border:

suffix vs prefix

lower-to-upper border:

infix vs whole

left-to-right border:

whole vs infix

lower-to-right border:

prefix vs suffix

O(n2) to compute all

Bedtime reading: “Semi-local string comparison: algorithmic techniques and applications” by Alexander Tiskin

12 / 21

String Alignment Graphs

The string alignment graph summarizes the DP scheme computing the similarity.

1

1

2

3

4

5

6

7

2 3 4 5 6 7

0

0 η(a1, b1)

sim(A,B)

sim(A[4 . . 7],B[1 . . 5])

lower-to-right border:

suffix vs prefix

lower-to-upper border:

infix vs whole

left-to-right border:

whole vs infix

lower-to-right border:

prefix vs suffix

O(n2) to compute all

Bedtime reading: “Semi-local string comparison: algorithmic techniques and applications” by Alexander Tiskin

12 / 21

String Alignment Graphs

The string alignment graph summarizes the DP scheme computing the similarity.

1

1

2

3

4

5

6

7

2 3 4 5 6 7

0

0 η(a1, b1)

sim(A,B)

sim(A[4 . . 7],B[1 . . 5])

lower-to-right border:

suffix vs prefix

lower-to-upper border:

infix vs whole

left-to-right border:

whole vs infix

lower-to-right border:

prefix vs suffix

O(n2) to compute all

Bedtime reading: “Semi-local string comparison: algorithmic techniques and applications” by Alexander Tiskin
12 / 21

Similarity of Trees

We compute the similarity between T and T ′.

a

T

a b

b e

c

a

T ′

a d e

a b

a

T

a b

b e

c

a

T ′

a d e

a b

η(v , v ′) := δ(v , ε) + δ(ε, v ′)− δ(v , v ′) “how much I save by substituting v with v ′”

sim(T ,T ′) =“maximum weight of similarity matching”

Condition on similarity matching: for any two matched vertices (v , v ′) and (u, u′)

• v is an ancestor of u in T if and only if v ′ is an ancestor of u′ in T ′,

• v comes before u in the pre-order of T if and only if v ′ comes before u′ in the pre-order of T ′.

sim(T ,T ′) =
∑

v∈T δ(v , ε) +
∑

v ′∈T ′ δ(ε, v ′)− ted(T ,T ′).

13 / 21

Similarity of Trees

We compute the similarity between T and T ′.

a

T

a b

b e

c

a

T ′

a d e

a b

a

T

a b

b e

c

a

T ′

a d e

a b

η(v , v ′) := δ(v , ε) + δ(ε, v ′)− δ(v , v ′) “how much I save by substituting v with v ′”

sim(T ,T ′) =“maximum weight of similarity matching”

Condition on similarity matching: for any two matched vertices (v , v ′) and (u, u′)

• v is an ancestor of u in T if and only if v ′ is an ancestor of u′ in T ′,

• v comes before u in the pre-order of T if and only if v ′ comes before u′ in the pre-order of T ′.

sim(T ,T ′) =
∑

v∈T δ(v , ε) +
∑

v ′∈T ′ δ(ε, v ′)− ted(T ,T ′).

13 / 21

Similarity of Trees

We compute the similarity between T and T ′.

a

T

a b

b e

c

a

T ′

a d e

a b

a

T

a b

b e

c

a

T ′

a d e

a b

η(v , v ′) := δ(v , ε) + δ(ε, v ′)− δ(v , v ′) “how much I save by substituting v with v ′”

sim(T ,T ′) =“maximum weight of similarity matching”

Condition on similarity matching: for any two matched vertices (v , v ′) and (u, u′)

• v is an ancestor of u in T if and only if v ′ is an ancestor of u′ in T ′,

• v comes before u in the pre-order of T if and only if v ′ comes before u′ in the pre-order of T ′.

sim(T ,T ′) =
∑

v∈T δ(v , ε) +
∑

v ′∈T ′ δ(ε, v ′)− ted(T ,T ′).
13 / 21

TED on Caterpillar Trees I

Let us start by computing the TED between two caterpillar trees...

l1 r1

l2 r2

l3 r3

l4 r4

l5 r5

l6 r6

T

l ′1 r ′1

l ′2 r ′2

l ′3 r ′3

l ′4 r ′4

l ′5 r ′5

l ′6 r ′6

T ′

spine nodes

left nodes

right nodes

L = l1l2l3l4l5l6

R = r1r2r3r4r5r6

L′ = l ′1l
′
2l

′
3l

′
4l

′
5l

′
6

R ′ = r ′1r
′
2r

′
3r

′
4r

′
5r

′
6

...with the assumption that spine, left and right nodes of T only match with nodes of their
same type (color) in T ′, respectively.

14 / 21

TED on Caterpillar Trees I

Let us start by computing the TED between two caterpillar trees...

l1 r1

l2 r2

l3 r3

l4 r4

l5 r5

l6 r6

T

l ′1 r ′1

l ′2 r ′2

l ′3 r ′3

l ′4 r ′4

l ′5 r ′5

l ′6 r ′6

T ′

spine nodes

left nodes

right nodes

L = l1l2l3l4l5l6

R = r1r2r3r4r5r6

L′ = l ′1l
′
2l

′
3l

′
4l

′
5l

′
6

R ′ = r ′1r
′
2r

′
3r

′
4r

′
5r

′
6

...with the assumption that spine, left and right nodes of T only match with nodes of their
same type (color) in T ′, respectively.

14 / 21

TED on Caterpillar Trees I

Let us start by computing the TED between two caterpillar trees...

l1 r1

l2 r2

l3 r3

l4 r4

l5 r5

l6 r6

T
l ′1 r ′1

l ′2 r ′2

l ′3 r ′3

l ′4 r ′4

l ′5 r ′5

l ′6 r ′6

T ′

spine nodes

left nodes

right nodes

L = l1l2l3l4l5l6

R = r1r2r3r4r5r6

L′ = l ′1l
′
2l

′
3l

′
4l

′
5l

′
6

R ′ = r ′1r
′
2r

′
3r

′
4r

′
5r

′
6

...with the assumption that spine, left and right nodes of T only match with nodes of their
same type (color) in T ′, respectively.

14 / 21

TED on Caterpillar Trees I

Let us start by computing the TED between two caterpillar trees...

l1 r1

l2 r2

l3 r3

l4 r4

l5 r5

l6 r6

T
l ′1 r ′1

l ′2 r ′2

l ′3 r ′3

l ′4 r ′4

l ′5 r ′5

l ′6 r ′6

T ′

spine nodes

left nodes

right nodes

L = l1l2l3l4l5l6

R = r1r2r3r4r5r6

L′ = l ′1l
′
2l

′
3l

′
4l

′
5l

′
6

R ′ = r ′1r
′
2r

′
3r

′
4r

′
5r

′
6

...with the assumption that spine, left and right nodes of T only match with nodes of their
same type (color) in T ′, respectively.

14 / 21

TED on Caterpillar Trees II

1

1

2

3

4

5

6

7

2 3 4 5 6 7

T T ′

0

0 η(l1, l
′
1)

0

0 η(r1, r
′
1)

sim(T ,T ′) equals to the maximum achievable sum of:

1. the weight of a path from (1, 1) to (n + 1, n + 1) in the alignment graph of sim(L, L′);

2. the weight of a path from (1, 1) to (n + 1, n + 1) in the alignment graph of sim(R,R ′); and

3. values η(ci , c
′
i′) for (i , i

′) where the two paths intersect (each ci and c ′i′ appears at most once).

15 / 21

TED on Caterpillar Trees II

1

1

2

3

4

5

6

7

2 3 4 5 6 7

T T ′

0

0 η(l1, l
′
1)

0

0 η(r1, r
′
1)

sim(T ,T ′) equals to the maximum achievable sum of:

1. the weight of a path from (1, 1) to (n + 1, n + 1) in the alignment graph of sim(L, L′);

2. the weight of a path from (1, 1) to (n + 1, n + 1) in the alignment graph of sim(R,R ′); and

3. values η(ci , c
′
i′) for (i , i

′) where the two paths intersect (each ci and c ′i′ appears at most once).

15 / 21

TED on Caterpillar Trees II

1

1

2

3

4

5

6

7

2 3 4 5 6 7

T T ′

0

0 η(l1, l
′
1)

0

0 η(r1, r
′
1)

sim(T ,T ′) equals to the maximum achievable sum of:

1. the weight of a path from (1, 1) to (n + 1, n + 1) in the alignment graph of sim(L, L′);

2. the weight of a path from (1, 1) to (n + 1, n + 1) in the alignment graph of sim(R,R ′); and

3. values η(ci , c
′
i′) for (i , i

′) where the two paths intersect (each ci and c ′i′ appears at most once).

15 / 21

TED on Caterpillar Trees II

1

1

2

3

4

5

6

7

2 3 4 5 6 7

T T ′

0

0 η(l1, l
′
1)

0

0 η(r1, r
′
1)

sim(T ,T ′) equals to the maximum achievable sum of:

1. the weight of a path from (1, 1) to (n + 1, n + 1) in the alignment graph of sim(L, L′);

2. the weight of a path from (1, 1) to (n + 1, n + 1) in the alignment graph of sim(R,R ′); and

3. values η(ci , c
′
i′) for (i , i

′) where the two paths intersect (each ci and c ′i′ appears at most once).

15 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees I

(1, 1)

(n + 1, n + 1)

(a, a′)

(b, b′)

(y , y ′)

(x , x ′)

Divide et Conquer Scheme

Input:

• The lower-left corner (a, a′) and upper-right corner
(b, b′) of a rectangle.

• sim((x , x ′), (y , y ′))
∀(x , x ′), (y , y ′) ∈ ([a . . b]× {b′}) ∪ ({b} × [a′ . . b′]).

Output:

• sim((x , x ′), (y , y ′))
∀(x , x ′), (y , y ′) ∈ ([a . . b]× {a′}) ∪ ({a} × [a′ . . b′]).

sim((x , x ′), (y , y ′)) equals to the maximum achievable sum of:

1. the weight of a path from (x , x ′) to (n + 1, n + 1) in the alignment graph of sim(L, L′);

2. the weight of a path from (y , y ′) to (n + 1, n + 1) in the alignment graph of sim(R,R ′); and

3. values η(ci , c
′
i′) for (i , i

′) where the two paths intersect (each ci and c ′i′ appears at most once).

16 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees I

(1, 1)

(n + 1, n + 1)

(a, a′)

(b, b′)

(y , y ′)

(x , x ′)

Divide et Conquer Scheme

Input:

• The lower-left corner (a, a′) and upper-right corner
(b, b′) of a rectangle.

• sim((x , x ′), (y , y ′))
∀(x , x ′), (y , y ′) ∈ ([a . . b]× {b′}) ∪ ({b} × [a′ . . b′]).

Output:

• sim((x , x ′), (y , y ′))
∀(x , x ′), (y , y ′) ∈ ([a . . b]× {a′}) ∪ ({a} × [a′ . . b′]).

sim((x , x ′), (y , y ′)) equals to the maximum achievable sum of:

1. the weight of a path from (x , x ′) to (n + 1, n + 1) in the alignment graph of sim(L, L′);

2. the weight of a path from (y , y ′) to (n + 1, n + 1) in the alignment graph of sim(R,R ′); and

3. values η(ci , c
′
i′) for (i , i

′) where the two paths intersect (each ci and c ′i′ appears at most once).

16 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees I

(1, 1)

(n + 1, n + 1)

(a, a′)

(b, b′)

(y , y ′)

(x , x ′)

Divide et Conquer Scheme

Input:

• The lower-left corner (a, a′) and upper-right corner
(b, b′) of a rectangle.

• sim((x , x ′), (y , y ′))
∀(x , x ′), (y , y ′) ∈ ([a . . b]× {b′}) ∪ ({b} × [a′ . . b′]).

Output:

• sim((x , x ′), (y , y ′))
∀(x , x ′), (y , y ′) ∈ ([a . . b]× {a′}) ∪ ({a} × [a′ . . b′]).

sim((x , x ′), (y , y ′)) equals to the maximum achievable sum of:

1. the weight of a path from (x , x ′) to (n + 1, n + 1) in the alignment graph of sim(L, L′);

2. the weight of a path from (y , y ′) to (n + 1, n + 1) in the alignment graph of sim(R,R ′); and

3. values η(ci , c
′
i′) for (i , i

′) where the two paths intersect (each ci and c ′i′ appears at most once).

16 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees I

(1, 1)

(n + 1, n + 1)

(a, a′)

(b, b′)

(y , y ′)

(x , x ′)

Divide et Conquer Scheme

Input:

• The lower-left corner (a, a′) and upper-right corner
(b, b′) of a rectangle.

• sim((x , x ′), (y , y ′))
∀(x , x ′), (y , y ′) ∈ ([a . . b]× {b′}) ∪ ({b} × [a′ . . b′]).

Output:

• sim((x , x ′), (y , y ′))
∀(x , x ′), (y , y ′) ∈ ([a . . b]× {a′}) ∪ ({a} × [a′ . . b′]).

sim((x , x ′), (y , y ′)) equals to the maximum achievable sum of:

1. the weight of a path from (x , x ′) to (n + 1, n + 1) in the alignment graph of sim(L, L′);

2. the weight of a path from (y , y ′) to (n + 1, n + 1) in the alignment graph of sim(R,R ′); and

3. values η(ci , c
′
i′) for (i , i

′) where the two paths intersect (each ci and c ′i′ appears at most once).

16 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees II

(1, 1)

(n + 1, n′ + 1)

(a, a′)

(b, b′)

(r , a′)

(r , b′)

1 2

(r , y ′) (w ,w ′)

(x , b′)

Inputs of subrectangle 2. ✔

Recurse on subrectangle 2. ✔

Inputs of subrectangle 1.✔

Recurse on subrectangle 1. ✔

Outputs of big rectangle. ✔

sim((x , b′), (r , y ′)) = max
(w ,w ′)

{
sim(R[r . .w),R ′[y ′ . .w ′)) + sim((x , b′), (w ,w ′))

}
.

17 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees II

(1, 1)

(n + 1, n′ + 1)

(a, a′)

(b, b′)

(r , a′)

(r , b′)

1 2

(r , y ′) (w ,w ′)

(x , b′)

Inputs of subrectangle 2. ✔

Recurse on subrectangle 2. ✔

Inputs of subrectangle 1.✔

Recurse on subrectangle 1. ✔

Outputs of big rectangle. ✔

sim((x , b′), (r , y ′)) = max
(w ,w ′)

{
sim(R[r . .w),R ′[y ′ . .w ′)) + sim((x , b′), (w ,w ′))

}
.

17 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees II

(1, 1)

(n + 1, n′ + 1)

(a, a′)

(b, b′)

(r , a′)

(r , b′)

1 2

(r , y ′) (w ,w ′)

(x , b′)

Inputs of subrectangle 2. ✔

Recurse on subrectangle 2. ✔

Inputs of subrectangle 1.

✔

Recurse on subrectangle 1. ✔

Outputs of big rectangle. ✔

sim((x , b′), (r , y ′)) = max
(w ,w ′)

{
sim(R[r . .w),R ′[y ′ . .w ′)) + sim((x , b′), (w ,w ′))

}
.

17 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees II

(1, 1)

(n + 1, n′ + 1)

(a, a′)

(b, b′)

(r , a′)

(r , b′)

1 2

(r , y ′) (w ,w ′)

(x , b′)

Inputs of subrectangle 2. ✔

Recurse on subrectangle 2. ✔

Inputs of subrectangle 1.

✔

Recurse on subrectangle 1. ✔

Outputs of big rectangle. ✔

sim((x , b′), (r , y ′)) = max
(w ,w ′)

{
sim(R[r . .w),R ′[y ′ . .w ′)) + sim((x , b′), (w ,w ′))

}
.

17 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees II

(1, 1)

(n + 1, n′ + 1)

(a, a′)

(b, b′)

(r , a′)

(r , b′)

1 2

(r , y ′) (w ,w ′)

(x , b′)

Inputs of subrectangle 2. ✔

Recurse on subrectangle 2. ✔

Inputs of subrectangle 1.

✔

Recurse on subrectangle 1. ✔

Outputs of big rectangle. ✔

sim((x , b′), (r , y ′)) = max
(w ,w ′)

{
sim(R[r . .w),R ′[y ′ . .w ′)) + sim((x , b′), (w ,w ′))

}
.

17 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees II

(1, 1)

(n + 1, n′ + 1)

(a, a′)

(b, b′)

(r , a′)

(r , b′)

1 2
(r , y ′) (w ,w ′)

(x , b′)

Inputs of subrectangle 2. ✔

Recurse on subrectangle 2. ✔

Inputs of subrectangle 1.✔

Recurse on subrectangle 1. ✔

Outputs of big rectangle. ✔

sim((x , b′), (r , y ′)) = max
(w ,w ′)

{
sim(R[r . .w),R ′[y ′ . .w ′)) + sim((x , b′), (w ,w ′))

}
.

17 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees II

(1, 1)

(n + 1, n′ + 1)

(a, a′)

(b, b′)

(r , a′)

(r , b′)

1 2

(r , y ′) (w ,w ′)

(x , b′)

Inputs of subrectangle 2. ✔

Recurse on subrectangle 2. ✔

Inputs of subrectangle 1.✔

Recurse on subrectangle 1. ✔

Outputs of big rectangle.

✔

sim((x , b′), (r , y ′)) = max
(w ,w ′)

{
sim(R[r . .w),R ′[y ′ . .w ′)) + sim((x , b′), (w ,w ′))

}
.

17 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees II

(1, 1)

(n + 1, n′ + 1)

(a, a′)

(b, b′)

(r , a′)

(r , b′)

1 2

(r , y ′) (w ,w ′)

(x , b′)

Inputs of subrectangle 2. ✔

Recurse on subrectangle 2. ✔

Inputs of subrectangle 1.✔

Recurse on subrectangle 1. ✔

Outputs of big rectangle. ✔

sim((x , b′), (r , y ′)) = max
(w ,w ′)

{
sim(R[r . .w),R ′[y ′ . .w ′)) + sim((x , b′), (w ,w ′))

}
.

17 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees III

Since we can handle vertical “cuts”, we can also handle horizontal “cuts”.

We obtain the recurrence
T (n) = 4T (n/2) +O(TAPSP).

Thus, T (n) = O(TAPSP) assuming TAPSP = O(n2+ε) for some ε > 0.

I cheated a bit... in the scheme I need to remember whether spines nodes are already mapped.

Q: How to drop the assumption that spines, left and right nodes map only nodes of
the same type?

18 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees III

Since we can handle vertical “cuts”, we can also handle horizontal “cuts”.

We obtain the recurrence
T (n) = 4T (n/2) +O(TAPSP).

Thus, T (n) = O(TAPSP) assuming TAPSP = O(n2+ε) for some ε > 0.

I cheated a bit... in the scheme I need to remember whether spines nodes are already mapped.

Q: How to drop the assumption that spines, left and right nodes map only nodes of
the same type?

18 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees III

Since we can handle vertical “cuts”, we can also handle horizontal “cuts”.

We obtain the recurrence
T (n) = 4T (n/2) +O(TAPSP).

Thus, T (n) = O(TAPSP) assuming TAPSP = O(n2+ε) for some ε > 0.

I cheated a bit... in the scheme I need to remember whether spines nodes are already mapped.

Q: How to drop the assumption that spines, left and right nodes map only nodes of
the same type?

18 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees III

Since we can handle vertical “cuts”, we can also handle horizontal “cuts”.

We obtain the recurrence
T (n) = 4T (n/2) +O(TAPSP).

Thus, T (n) = O(TAPSP) assuming TAPSP = O(n2+ε) for some ε > 0.

I cheated a bit... in the scheme I need to remember whether spines nodes are already mapped.

Q: How to drop the assumption that spines, left and right nodes map only nodes of
the same type?

18 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees III

Since we can handle vertical “cuts”, we can also handle horizontal “cuts”.

We obtain the recurrence
T (n) = 4T (n/2) +O(TAPSP).

Thus, T (n) = O(TAPSP) assuming TAPSP = O(n2+ε) for some ε > 0.

I cheated a bit... in the scheme I need to remember whether spines nodes are already mapped.

Q: How to drop the assumption that spines, left and right nodes map only nodes of
the same type?

18 / 21

A Divide and Conquer Scheme for TED on Caterpillar Trees III

Since we can handle vertical “cuts”, we can also handle horizontal “cuts”.

We obtain the recurrence
T (n) = 4T (n/2) +O(TAPSP).

Thus, T (n) = O(TAPSP) assuming TAPSP = O(n2+ε) for some ε > 0.

I cheated a bit... in the scheme I need to remember whether spines nodes are already mapped.

Q: How to drop the assumption that spines, left and right nodes map only nodes of
the same type?

18 / 21

TED on Caterpillar Trees: Dropping the Assumption

(1, 1)

(n + 1, n′ + 1)

(b, b′)

(a, a′)

la

cb

T

c ′a′

r ′b′

T ′

19 / 21

TED on Caterpillar Trees: Dropping the Assumption

(1, 1)

(n + 1, n′ + 1)

(b, b′)

(a, a′)

la

cb

T

c ′a′

r ′b′

T ′

19 / 21

TED on Caterpillar Trees: Dropping the Assumption

(1, 1)

(n + 1, n′ + 1)

(b, b′)

(a, a′)

la

cb

T

c ′a′

r ′b′

T ′

19 / 21

TED on Caterpillar Trees: Dropping the Assumption

(1, 1)

(n + 1, n′ + 1)

(b, b′)

(a, a′)

la

cb

T

c ′a′

r ′b′

T ′

19 / 21

TED on Caterpillar Trees: Dropping the Assumption

(1, 1)

(n + 1, n′ + 1)

(b, b′)

(a, a′)

la

cb

T

c ′a′

r ′b′

T ′

19 / 21

From Caterpillar Trees to Arbitrary Trees

We generalize TED on caterpillar trees to Spine Edit Distance.

Input: trees T ,T ′, root-to-leaf paths S ⊆ T ,S ′ ⊆ T ′, and sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ (T ×T ′) \ (S × S ′).

Output: sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ S × S ′.

Why?

• There are still spine, left, and right nodes.

• The underlying paths are not in string alignment graphs anymore but in forest alignment graphs.

We also prove that TED on arbitrary trees is fine-grained equivalent to Spine Edit Distance.

20 / 21

From Caterpillar Trees to Arbitrary Trees

We generalize TED on caterpillar trees to Spine Edit Distance.

Input: trees T ,T ′, root-to-leaf paths S ⊆ T ,S ′ ⊆ T ′, and sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ (T ×T ′) \ (S × S ′).

Output: sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ S × S ′.

Why?

• There are still spine, left, and right nodes.

• The underlying paths are not in string alignment graphs anymore but in forest alignment graphs.

We also prove that TED on arbitrary trees is fine-grained equivalent to Spine Edit Distance.

20 / 21

From Caterpillar Trees to Arbitrary Trees

We generalize TED on caterpillar trees to Spine Edit Distance.

Input: trees T ,T ′, root-to-leaf paths S ⊆ T ,S ′ ⊆ T ′, and sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ (T ×T ′) \ (S × S ′).

Output: sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ S × S ′.

Why?

• There are still spine, left, and right nodes.

• The underlying paths are not in string alignment graphs anymore but in forest alignment graphs.

We also prove that TED on arbitrary trees is fine-grained equivalent to Spine Edit Distance.

20 / 21

From Caterpillar Trees to Arbitrary Trees

We generalize TED on caterpillar trees to Spine Edit Distance.

Input: trees T ,T ′, root-to-leaf paths S ⊆ T ,S ′ ⊆ T ′, and sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ (T ×T ′) \ (S × S ′).

Output: sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ S × S ′.

Why?

• There are still spine, left, and right nodes.

• The underlying paths are not in string alignment graphs anymore but in forest alignment graphs.

We also prove that TED on arbitrary trees is fine-grained equivalent to Spine Edit Distance.

20 / 21

From Caterpillar Trees to Arbitrary Trees

We generalize TED on caterpillar trees to Spine Edit Distance.

Input: trees T ,T ′, root-to-leaf paths S ⊆ T ,S ′ ⊆ T ′, and sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ (T ×T ′) \ (S × S ′).

Output: sim(sub(v), sub(v ′)) ∀(v , v ′) ∈ S × S ′.

Why?

• There are still spine, left, and right nodes.

• The underlying paths are not in string alignment graphs anymore but in forest alignment graphs.

We also prove that TED on arbitrary trees is fine-grained equivalent to Spine Edit Distance.

20 / 21

Thanks!

21 / 21

