
Hardness of Tree Edit Distance and Friends

Bingbing Hu1 Jakob Nogler2 Barna Saha1

1UC San Diego

2MIT

1 / 13

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a character c with c ′ with cost δ(c, c ′)
abcxef abcyef

2. Delete a character c with cost δ(c, ε)
abcdef abdef

3. Insert a character c with cost δ(ε, c)
abcef abcxef

“Unweighted” (String) Edit Distance: all costs are one

2 / 13

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a character c with c ′ with cost δ(c, c ′)
abcxef abcyef

2. Delete a character c with cost δ(c, ε)
abcdef abdef

3. Insert a character c with cost δ(ε, c)
abcef abcxef

“Unweighted” (String) Edit Distance: all costs are one

2 / 13

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a character c with c ′ with cost δ(c, c ′)
abcxef abcyef

2. Delete a character c with cost δ(c, ε)
abcdef abdef

3. Insert a character c with cost δ(ε, c)
abcef abcxef

“Unweighted” (String) Edit Distance: all costs are one

2 / 13

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a character c with c ′ with cost δ(c, c ′)
abcxef abcyef

2. Delete a character c with cost δ(c, ε)
abcdef abdef

3. Insert a character c with cost δ(ε, c)
abcef abcxef

“Unweighted” (String) Edit Distance: all costs are one

2 / 13

(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a character c with c ′ with cost δ(c, c ′)
abcxef abcyef

2. Delete a character c with cost δ(c, ε)
abcdef abdef

3. Insert a character c with cost δ(ε, c)
abcef abcxef

“Unweighted” (String) Edit Distance: all costs are one
2 / 13

(String) Edit Distance Algorithms

References Time Remarks

Vin68, NW70, Sel74, WF74 O(n2) textbook algorithm
MP80 O(n2/ log2 n) small alphabets and integer weights only
BF05 O(n2 log log n/ log2 n) small integer weights only

BI18 Ω(n2−o(1)) under SETH, already for unweighted

3 / 13

Dynamic (String) Edit Distance
Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their
edit distance.

ed(port , arts) = 3

Question: Can we do better than recomputing from scratch?

References Update Time Remarks

CKM20 Õ(n) unweighted
CKM20 Õ(n ·min(

√
n,W)) uniform weights, W is maximum weight

GK25 Õ(nW) arbitrary weights

CKW23 Ω(n1.5−o(1)) under APSP, large W

4 / 13

Dynamic (String) Edit Distance
Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their
edit distance.

ed(part , arts) = 2

Question: Can we do better than recomputing from scratch?

References Update Time Remarks

CKM20 Õ(n) unweighted
CKM20 Õ(n ·min(

√
n,W)) uniform weights, W is maximum weight

GK25 Õ(nW) arbitrary weights

CKW23 Ω(n1.5−o(1)) under APSP, large W

4 / 13

Dynamic (String) Edit Distance
Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their
edit distance.

ed(part , art) = 1

Question: Can we do better than recomputing from scratch?

References Update Time Remarks

CKM20 Õ(n) unweighted
CKM20 Õ(n ·min(

√
n,W)) uniform weights, W is maximum weight

GK25 Õ(nW) arbitrary weights

CKW23 Ω(n1.5−o(1)) under APSP, large W

4 / 13

Dynamic (String) Edit Distance
Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their
edit distance.

ed(part , art) = 1

Question: Can we do better than recomputing from scratch?

References Update Time Remarks

CKM20 Õ(n) unweighted
CKM20 Õ(n ·min(

√
n,W)) uniform weights, W is maximum weight

GK25 Õ(nW) arbitrary weights

CKW23 Ω(n1.5−o(1)) under APSP, large W

4 / 13

Dynamic (String) Edit Distance
Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their
edit distance.

ed(part , art) = 1

Question: Can we do better than recomputing from scratch?

References Update Time Remarks

CKM20 Õ(n) unweighted
CKM20 Õ(n ·min(

√
n,W)) uniform weights, W is maximum weight

GK25 Õ(nW) arbitrary weights

CKW23 Ω(n1.5−o(1)) under APSP, large W

4 / 13

This Paper:
Generalization of (String) Edit Distance

in the Dynamic Setting

5 / 13

Tree Edit Distance
(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.w� Generalization on Trees

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2 using deletion, insertions and substitutions.

aT1

a b

b e

c

aT2

a d e

a b
6 / 13

Tree Edit Distance
(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.w� Generalization on Trees

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2 using deletion, insertions and substitutions.

a

a d e

a b

Substitution

a

a a e

a b
6 / 13

Tree Edit Distance
(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.w� Generalization on Trees

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2 using deletion, insertions and substitutions.

a

a d e

a b

Deletetion

a

a d a b

6 / 13

Tree Edit Distance
(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.w� Generalization on Trees

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2 using deletion, insertions and substitutions.

a

a d e

Insert

a

c

a d

e

6 / 13

Algorithms for Tree Edit Distance

Reference Complexity Remarks

Tai79 O(n6) weighted
SZ89 O(n4) weighted
Klein98 O(n3 log n) weighted
DMRW10 O(n3) weighted
BGMW20 no O(n3−ε) algo under APSP weighted
NPSVWXY25 n3/2Ω(

√
log n) weighted

Mao22 O(n2.9546) unweighted
Dürr23 O(n2.9148) unweighted
NPSVWXY25 O(n2.687) unweighted

Question 1: How about Dynamic Tree Edit Distance?

Question 2: Is Unweighted Edit Distance on trees harder than on strings?

7 / 13

Algorithms for Tree Edit Distance

Reference Complexity Remarks

Tai79 O(n6) weighted
SZ89 O(n4) weighted
Klein98 O(n3 log n) weighted
DMRW10 O(n3) weighted
BGMW20 no O(n3−ε) algo under APSP weighted
NPSVWXY25 n3/2Ω(

√
log n) weighted

Mao22 O(n2.9546) unweighted
Dürr23 O(n2.9148) unweighted
NPSVWXY25 O(n2.687) unweighted

Question 1: How about Dynamic Tree Edit Distance?

Question 2: Is Unweighted Edit Distance on trees harder than on strings?

7 / 13

Algorithms for Tree Edit Distance

Reference Complexity Remarks

Tai79 O(n6) weighted
SZ89 O(n4) weighted
Klein98 O(n3 log n) weighted
DMRW10 O(n3) weighted
BGMW20 no O(n3−ε) algo under APSP weighted
NPSVWXY25 n3/2Ω(

√
log n) weighted

Mao22 O(n2.9546) unweighted
Dürr23 O(n2.9148) unweighted
NPSVWXY25 O(n2.687) unweighted

Question 1: How about Dynamic Tree Edit Distance?

Question 2: Is Unweighted Edit Distance on trees harder than on strings?

7 / 13

Dyck Edit Distance
(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.w� About Balanced Sequence of Parenthesis

Dyck Edit Distance Problem
Input: A string S over a set of parenthesis
Output: Closest S ′ to S w.r.t. edit distance such that S ′ is balanced

S = (({)] −→ S ′ = ({ })

distance = 3

8 / 13

Dyck Edit Distance
(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.w� About Balanced Sequence of Parenthesis

Dyck Edit Distance Problem
Input: A string S over a set of parenthesis
Output: Closest S ′ to S w.r.t. edit distance such that S ′ is balanced

S = (({)] −→ S ′ = ({ })

distance = 3

8 / 13

RNA Folding
RNA Folding
Input: A string S over alphabets Σ∪Σ′, where each σ ∈ Σ has a matching symbol σ′ ∈ Σ′.
Output: Max. number of intersection-free connections between matching symbols σ, σ′.

G C A U U A C U G G

G
A

C
U

Σ Σ′

Relation with edit distance: we can embed edit distance in RNA folding.

9 / 13

RNA Folding
RNA Folding
Input: A string S over alphabets Σ∪Σ′, where each σ ∈ Σ has a matching symbol σ′ ∈ Σ′.
Output: Max. number of intersection-free connections between matching symbols σ, σ′.

G C A U U A C U G G

G
A

C
U

Σ Σ′

Relation with edit distance: we can embed edit distance in RNA folding.

9 / 13

RNA Folding
RNA Folding
Input: A string S over alphabets Σ∪Σ′, where each σ ∈ Σ has a matching symbol σ′ ∈ Σ′.
Output: Max. number of intersection-free connections between matching symbols σ, σ′.

G C A U U A C U G G

G
A

C
U

Σ Σ′

Relation with edit distance: we can embed edit distance in RNA folding.

9 / 13

RNA Folding
RNA Folding
Input: A string S over alphabets Σ∪Σ′, where each σ ∈ Σ has a matching symbol σ′ ∈ Σ′.
Output: Max. number of intersection-free connections between matching symbols σ, σ′.

G C A U U A C U G G

G
A

C
U

Σ Σ′

Relation with edit distance: we can embed edit distance in RNA folding.

9 / 13

Algorithms for Dyck Edit Distance and RNA Folding

References Time Remarks

AP72, NJ80 O(n3)
VGF14 O(n3/ log n)
BGSVW17 O(n2.8603)
CDXW22 O(n2.687)

ABVW18 Ω(n3−o(1)) under k-Clique Detection, combinatorial

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

10 / 13

Algorithms for Dyck Edit Distance and RNA Folding

References Time Remarks

AP72, NJ80 O(n3)
VGF14 O(n3/ log n)
BGSVW17 O(n2.8603)
CDXW22 O(n2.687)

ABVW18 Ω(n3−o(1)) under k-Clique Detection, combinatorial

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

10 / 13

Our Results: Bad News...

11 / 13

Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

12 / 13

Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

12 / 13

Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

12 / 13

Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

12 / 13

Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

12 / 13

Thanks!

13 / 13

