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(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.

1. Substitute a character c with c ′ with cost δ(c, c ′)
abcxef abcyef

2. Delete a character c with cost δ(c, ε)
abcdef abdef

3. Insert a character c with cost δ(ε, c)
abcef abcxef

“Unweighted” (String) Edit Distance: all costs are one
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(String) Edit Distance Algorithms

References Time Remarks

Vin68, NW70, Sel74, WF74 O(n2) textbook algorithm
MP80 O(n2/ log2 n) small alphabets and integer weights only
BF05 O(n2 log log n/ log2 n) small integer weights only

BI18 Ω(n2−o(1)) under SETH, already for unweighted
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Dynamic (String) Edit Distance
Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their
edit distance.

ed( port , arts ) = 3

Question: Can we do better than recomputing from scratch?

References Update Time Remarks

CKM20 Õ(n) unweighted
CKM20 Õ(n ·min(

√
n,W )) uniform weights, W is maximum weight

GK25 Õ(nW ) arbitrary weights

CKW23 Ω(n1.5−o(1)) under APSP, large W
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This Paper:
Generalization of (String) Edit Distance

in the Dynamic Setting
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Tree Edit Distance
(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.w� Generalization on Trees

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered trees T1,T2 and a cost function δ.
Output: Cheapest transformation of T1 into T2 using deletion, insertions and substitutions.

aT1

a b

b e

c

aT2

a d e

a b
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Tree Edit Distance (Background)
Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data analysis, image processing, compiler optimization, and more.

Source: www.support.safe.com
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Algorithms for Tree Edit Distance

Reference Complexity Remarks

Tai79 O(n6) weighted
SZ89 O(n4) weighted
Klein98 O(n3 log n) weighted
DMRW10 O(n3) weighted
BGMW20 no O(n3−ε) algo under APSP weighted
NPSVWXY25 n3/2Ω(

√
log n) weighted

Mao22 O(n2.9546) unweighted
Dürr23 O(n2.9148) unweighted
NPSVWXY25 O(n2.687) unweighted

Question 1: How about Dynamic Tree Edit Distance?

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
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Dyck Edit Distance
(String) Edit Distance Problem
Input: Two strings S1,S2 and a cost function δ.
Output: Cheapest transformation of S1 into S2 using deletion, insertions and substitutions.w� About Balanced Sequence of Parenthesis

Dyck Edit Distance Problem
Input: A string S over a set of parenthesis
Output: Closest S ′ to S w.r.t. edit distance such that S ′ is balanced

S = ( ( { ) ] −→ S ′ = ( { } )

distance = 3
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RNA Folding
RNA Folding
Input: A string S over alphabets Σ∪Σ′, where each σ ∈ Σ has a matching symbol σ′ ∈ Σ′.
Output: Max. number of intersection-free connections between matching symbols σ, σ′.

G C A U U A C U G G

G
A

C
U

Σ Σ′

Relation with edit distance: we can embed edit distance in RNA folding.
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Algorithms for Dyck Edit Distance and RNA Folding

References Time Remarks

AP72, NJ80 O(n3)
VGF14 O(n3/ log n)
BGSVW17 O(n2.8603)
CDXW22 O(n2.687)

ABVW18 Ω(n3−o(1)) under k-Clique Detection, combinatorial

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?
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Our Results: Bad News...

12 / 24



Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

13 / 24



Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

13 / 24



Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

13 / 24



Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

13 / 24



Our Results
Question 1: How about Dynamic Tree Edit Distance?

Theorem
For any ε > 0, there are no dynamic algorithms:

• for weighted TED with O(n3−ε) update time, unless Weighted 4-Clique Conj. fails;
• for unweighted TED with O(n2−ε) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
Dynamic Unweighted Edit Distance 6= Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

Theorem
For any ε > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3−ε)
(comb.) updated time, unless k-Clique Detection Conj. fails

13 / 24



The Two Conjectures
k-Clique Detection
Input: A unweighted graph G = (V ,E) on n nodes.
Output: Yes if there are v1, . . . , vk ∈ V such that v1, . . . , vk is a k-clique, and No otherwise.

k-Clique Detection Conjecture
For any ε > 0, k-Clique Detection cannot be solved in O(nk−ε) time by any combinatorial algorithm.

Weighted k-Clique
Input: A weighted graph G = (V ,E ,w).
Output: minv1,...,vk∈V

∑
i<j w(vi , vj) such that v1, . . . , vk is a k-clique.

Weighted k-Clique Conjecture
For any ε > 0, there is c > 0 such that for any k > 3, the Weighted k-Clique with edge weights in
{1, . . . , nck} cannot be solved in O(nk(1−ε)) time.

14 / 24
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Prook Sketch:
Lower Bound for Dynamic Unweighted Tree Edit Distance

15 / 24



Proof Sketch
3k-Clique Detection Conjecture
For any ε > 0, 3k-Clique Detection cannot be solved in O(n3k−ε) time by any combinatorial algorithm.

Steps:

• List all k-cliques X1, . . . ,XN in time O(nk);
• For each k-clique Xa, we construct two trees T(Xa),T′(Xa) s.t.

ted(T(Xa),T′(Xa)) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t.
Xa ∪ Xb ∪ Xc is 3k-clique.

Size of T(Xa),T′(Xa) is nk+O(1) and dependence on Xa is nO(1).

• Proceed in N rounds. In round i :

• Verify whether there are Xb ,Xc s.t. Xa ∪ Xb ∪ Xc is 3k-clique,
• Transform T(Xa),T′(Xa) into T(Xa+1),T′(Xa+1) via nO(1) updates.

Xa

Xb

Xc

G

Runtime: nk︸︷︷︸
rounds

× nO(1)︸ ︷︷ ︸
updates per rounds

× (nk+O(1))2−ε′︸ ︷︷ ︸
time per update

k large enough
≤ n3k−ε
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Clique Gadgets

Goal: For each k-clique Xa , construct two trees T(Xa), T′(Xa) s.t. ted(T(Xa), T′(Xa)) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t.
Xa ∪ Xb ∪ Xc is a 3k-clique.

Core Gadget: Given G, there exist two string embeddings CLG : V k → Σλ1 and CNG : V k → Σλ2 of
lengths λ1, λ2 = nO(1) and a constant C such that for any k-cliques X ,Y ∈ V k :

ed(CLG(X ),CNG(Y)) = C if X is fully connected with Y,
ed(CLG(X ),CNG(Y)) > C otherwise.

Remark: Similar gadgets already appear in ABVW17, but for different string similarity notions.
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Proof Sketch II

Goal: For each k-clique Xa , construct two trees T(Xa), T′(Xa) s.t. ted(T(Xa), T′(Xa)) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t.
Xa ∪ Xb ∪ Xc is a 3k-clique.

CNG(X1) + CLG(X1)

CNG(X2) + CLG(X2)
...

CNG(Xb) + CLG(Xb)
...

CNG(XN) + CLG(XN)

CNG(Xa)

T(Xa)

CNG(X1) + CLG(X1)

CNG(X2) + CLG(X2)
...

CNG(Xc) + CLG(Xc)
...

CNG(XN) + CLG(XN)

CLG(Xa)

T′(Xa)

ted( T(Xa) , T′(Xa) ) =

minb,c ed(CNG(Xa),CLG(Xb)) + ed(CNG(Xb),CLG(Xc)) + ed(CNG(Xc),CLG(Xa)) + D
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Simplified Goal I

Simplified Goal: Construct two trees T, T′ s.t. ted(T, T′) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t. Xb ∪ Xc is a 2k-clique.

CNG(X1)

CNG(X2)
...

CNG(Xb)
...

CNG(XN)

T

CLG(X1)

CLG(X2)
...

CLG(Xc)
...

CLG(XN)

T′

ted( T , T′ ) =

minb,c ed(CNG(Xb),CLG(Xc)) + D
where D is a constant
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Simplified Goal II

Simplified Goal: Construct two trees T, T′ s.t. ted(T, T′) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t. Xb ∪ Xc is a 2k-clique.

$

CLG
(X

1 )
CLG

(X
2 )

CLG
(X

i )
CLG

(X
N
)

§···§

#λN
L

#λN
L

#λ
R

#λ
R

#λ
R

#λ
R

$

CNG
(X

1 )
CNG

(X
2 )

CNG
(X

i )
CNG

(X
N
)

§···§

#λ
L

#λ
L

#λ
L

#λ
L

#λN
R

#λN
R

Put all CLG(Xi)/CNG(Xi) on a single spine.
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Simplified Goal II

Simplified Goal: Construct two trees T, T′ s.t. ted(T, T′) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t. Xb ∪ Xc is a 2k-clique.
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CNG
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CNG
(X

i )
CNG

(X
N
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§···§

#λ
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#λ
L
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#λ
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#λN
R

#λN
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Append a long enough tail with a special character §.
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Append left special character #L, here λ ≈ 100 · length of CLG/CNG.
20 / 24



Simplified Goal II

Simplified Goal: Construct two trees T, T′ s.t. ted(T, T′) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t. Xb ∪ Xc is a 2k-clique.
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Do the same on the right.
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Proof Sketch III

Goal: For each k-clique Xa , construct two trees T(Xa), T′(Xa) s.t. ted(T(Xa), T′(Xa)) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t.
Xa ∪ Xb ∪ Xc is a 3k-clique.

CNG(X1)

CNG(X2)

...
CNG(Xb )

...
CNG(XN )

T

CLG(X1)

CLG(X2)

...
CLG(Xc )

...
CLG(XN )

T′

ted( T , T′ ) =

minb,c ed(CNG(Xb ), CLG(Xc )) + D

CNG(X1) + CLG(X1)

CNG(X2) + CLG(X2)

...
CNG(Xb ) + CLG(Xb )

...
CNG(XN ) + CLG(XN )

CNG(Xa)

T(Xa)

CNG(X1) + CLG(X1)

CNG(X2) + CLG(X2)

...
CNG(Xc ) + CLG(Xc )

...
CNG(XN ) + CLG(XN )

CLG(Xa)

T′(Xa)

ted( T(Xa) , T′(Xa) ) =

minb,c ed(CNG(Xa), CLG(Xb )) + ed(CNG(Xb ), CLG(Xc )) +
ed(CNG(Xc ), CLG(Xa)) + D
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Proof Sketch IV

Goal: For each k-clique Xa , construct two trees T(Xa), T′(Xa) s.t. ted(T(Xa), T′(Xa)) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t.
Xa ∪ Xb ∪ Xc is a 3k-clique.
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R

Squeeze in dependence on Xa.
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Proof Sketch IV

Goal: For each k-clique Xa , construct two trees T(Xa), T′(Xa) s.t. ted(T(Xa), T′(Xa)) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t.
Xa ∪ Xb ∪ Xc is a 3k-clique.
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Size requirement: nk+O(1). 4
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Proof Sketch IV

Goal: For each k-clique Xa , construct two trees T(Xa), T′(Xa) s.t. ted(T(Xa), T′(Xa)) tells us whether there are k-cliques Xb ,Xc ⊆ V k s.t.
Xa ∪ Xb ∪ Xc is a 3k-clique.
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Dependence on Xa: nO(1).4
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Other Lower Bounds
RNA Folding/Dyck Edit Distance:

• We use 4k-Clique Detection;
• We again partition in k-cliques;
• Each round, we fix one k-clique and check whether there are 3 other k-cliques that together form

4k-clique;
• Somehow easier because static lower bound alreay tells us how to find 3k-clique.

Weighted Tree Edit Distance

• We use Weighted 4k-Clique;
• Each round, we fix one node and find three nodes that minimize 4-clique where fixed node is in;
• Also somehow easier because static lower bound alreay tells us how to detect minimum weight

3-clique, i.e., triangle.
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