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(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1, S and a cost function 9.
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(String) Edit Distance

(String) Edit Distance Problem
Input: Two strings S1, S and a cost function 9.
Output: Cheapest transformation of Sy into Sy using deletion, insertions and substitutions.

1. Substitute a character ¢ with ¢’ with cost d(c, ¢’)

abcxef abcyef

2. Delete a character ¢ with cost J(c,¢)

abcdef abdef

3. Insert a character ¢ with cost d(e, ¢)

abcef abcxef

“Unweighted” (String) Edit Distance: all costs are one
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(String) Edit Distance Algorithms

References

Time

Remarks

Vin68, NW70, Sel74, WF74
MP80
BFO05

O(n?)
O(n?/ log? n)
O(n?loglog n/ log? n)

textbook algorithm
small alphabets and integer weights only
small integer weights only

BI18

Q(nZ—o(l))

under SETH, already for unweighted
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Dynamic (String) Edit Distance

Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their
edit distance.

ed( port , arts ) =3
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Dynamic (String) Edit Distance

Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their

edit distance.

ed( part , art ) =1

Question: Can we do better than recomputing from scratch?

References Update Time Remarks

CKM20 O(n) unweighted

CKM20 O(n-min(y/n, W)) uniform weights, W is maximum weight
GK25 O(nW) arbitrary weights

CKW23 Q(nt5—o(1) under APSP, large W
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This Paper:
Generalization of (String) Edit Distance
in the Dynamic Setting
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Tree Edit Distance

(String) Edit Distance Problem
Input: Two strings 51, 5> and a cost function 4.
Output: Cheapest transformation of Sy into Sy using deletion, insertions and substitutions.

ll Generalization on Trees

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered trees T1, T» and a cost function §.
Output: Cheapest transformation of T; into T, using deletion, insertions and substitutions.
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Tree Edit Distance

(String) Edit Distance Problem
Input: Two strings 51, 5> and a cost function 4.
Output: Cheapest transformation of Sy into Sy using deletion, insertions and substitutions.

ll Generalization on Trees

Tree Edit Distance Problem (TED)
Input: Two rooted, labeled, left-to-right-ordered trees T1, T» and a cost function §.
Output: Cheapest transformation of T; into T, using deletion, insertions and substitutions.
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Tree Edit Distance (Background)

Background: Introduced by Selkow in the late 1970s. Applications in computational biology,
structured data analysis, image processing, compiler optimization, and more.

<?xml version="1.0"7?>
- <Dataset xmlIns="http://www.safe.com">
- <Building id="Surrey Head Office">
<Address>"7445 132 St."</Address>
<City>Surrey</City>
<Province>BC</Province>
<Country>Canada<,/Country>
- <Location>
<lLongitude>-122.860</Longitude>
<lLatitude>49.138</Latitude>
</Location>
<Reference>https:/ /www.google.ca/maps;
3m1!4b114m5!3m411s0x5485dbd520cc
122.8574636?hl=en</Reference>
- <Room id="Admin_100">

Source: www.support.safe.com
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Algorithms for Tree Edit Distance

Reference Complexity Remarks
Tai79 O(n®) weighted
S789 O(n*) weighted
Klein98 O(n®log n) weighted
DMRW10 O(n?) weighted
BGMW20 no O(n*~¢) algo under APSP  weighted
NPSVWXY25  p3/2%VIogn) weighted
Mao22 O(n?9546) unweighted
Diirr23 O(n*9148) unweighted

NPSVWXY25  O(n?87) unweighted
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Question 1: How about Dynamic Tree Edit Distance?

Question 2: Is Unweighted Edit Distance on trees harder than on strings?
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Dyck Edit Distance

(String) Edit Distance Problem
Input: Two strings S1, S, and a cost function 9.
Output: Cheapest transformation of S; into S, using deletion, insertions and substitutions.

ll About Balanced Sequence of Parenthesis

Dyck Edit Distance Problem
Input: A string S over a set of parenthesis
Output: Closest S’ to S w.r.t. edit distance such that S’ is balanced
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Dyck Edit Distance

(String) Edit Distance Problem
Input: Two strings S1, S, and a cost function 9.
Output: Cheapest transformation of S; into S, using deletion, insertions and substitutions.

ll About Balanced Sequence of Parenthesis

Dyck Edit Distance Problem
Input: A string S over a set of parenthesis
Output: Closest S’ to S w.r.t. edit distance such that S’ is balanced

S=(({)]1 — S=({})
distance = 3
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RNA Folding

RNA Folding
Input: A string S over alphabets YUY, where each o € ¥ has a matching symbol ¢/ € ¥’
Output: Max. number of intersection-free connections between matching symbols o, o”.
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RNA Folding

RNA Folding
Input: A string S over alphabets YUY, where each o € ¥ has a matching symbol ¢/ € ¥’
Output: Max. number of intersection-free connections between matching symbols o, o”.

G C
I

r Y

Relation with edit distance: we can embed edit distance in RNA folding.
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Algorithms for Dyck Edit Distance and RNA Folding

References Time Remarks

AP72, NJ8O  O(n?)
VGF14 O(n3/logn)
BGSVW17  O(n?8603)
CDXW?22 O(n*987)

ABVW18 Q(n*=°M)  under k-Clique Detection, combinatorial
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Our Results: Bad News...
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® for weighted TED with O(n3~¢) update time, unless Weighted 4-Clique Conj. fails;
e for unweighted TED with O(n?>~¢) (comb.) updated time, unless k-Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?

Dynamic Unweighted Edit Distance # Dynamic Unweighted Tree Edit Distance

Question 3: How about Dynamic Dyck Edit Distance and RNA Folding?

For any ¢ > 0, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with O(n3¢)
(comb.) updated time, unless k-Clique Detection Conj. fails
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The Two Conjectures

k-Clique Detection
Input: A unweighted graph G = (V, E) on n nodes.
Output: YES if there are vq,..., v € V such that vy, ..., v is a k-clique, and NO otherwise.
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k-Clique Detection
Input: A unweighted graph G = (V, E) on n nodes.
Output: YES if there are vq,..., v € V such that vy, ..., v is a k-clique, and NO otherwise.

k-Clique Detection Conjecture

For any € > 0, k-Clique Detection cannot be solved in O(n¥~¢) time by any combinatorial algorithm.

Weighted k-Clique
Input: A weighted graph G = (V, E, w).
Output: miny,_,ev ZKJ. w(vj, vj) such that vi,..., v is a k-clique.

Weighted k-Clique Conjecture

For any € > 0, there is ¢ > 0 such that for any k > 3, the Weighted k-Clique with edge weights in
{1,...,n%} cannot be solved in O(n*(1=4)) time.
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Prook Sketch:
Lower Bound for Dynamic Unweighted Tree Edit Distance
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Proof Sketch

3k-Clique Detection Conjecture
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Clique Gadgets

oal: For eacl -clique , construct two trees s.t. tel tells us whether there are k-cliques s.t.
Goal: F h k-clique X, T(X,), T/ (X,) d(T(X,), T/ (X)) tell hether th k-cliques Xp,, X, C VK J

X3 U Xp U Xc is a 3k-clique.

Core Gadget: Given G, there exist two string embeddings CLG : VK — ¥* and CNG : V¥ — ¥ of
lengths A1, A2 = n®1) and a constant C such that for any k-cliques X,) € V:

ed(CLG(X),CNG(Y)) = C if X is fully connected with ),

ed(CLG(X), CNG(Y)) > C

otherwise.
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Core Gadget: Given G, there exist two string embeddings CLG : VK — ¥* and CNG : V¥ — ¥ of
lengths A1, A2 = n®1) and a constant C such that for any k-cliques X,) € V:

ed(CLG(X),CNG(Y)) = C if X is fully connected with ),

ed(CLG(X), CNG(Y)) > C

otherwise.

Remark: Similar gadgets already appear in ABVW17, but for different string similarity notions.
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Proof Sketch Il

Goal: For each k-clique X, construct two trees T(X;), T/ (X;) st ted(T(X,), T/ (X)) tells us whether there are k-cliques X}, X C VK s.t.

X3 U Xp U Xc is a 3k-clique.

CNG(1)
CNG(X,)

CNG(Xp)

CNG(Xy)

i

CLG(Xy)
CLG(X)

CLG(Xs)

CLG(Xy)

CNG(X,)

CNG(X;) + CLG(AY)
CNG(X,) + CLG(AR)
CNG(X) + CLG(X,)
CNG(Xy) + CLG(Xy)
CLG(X)

T'(X)
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CNG(&;) + CLG(A) | CNG(X) + CLG(X)
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CNG(¥;) + CNG(X,) + CLG(Xe)
CNG(XN)%;— CNG(X) :MCLG(XN)
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Proof Sketch Il

Goal: For each k-clique X, construct two trees T(X;), T/ (X;) st ted(T(X,), T/ (X)) tells us whether there are k-cliques X}, X C VK s.t.
X3 U Xp U Xc is a 3k-clique.

[ CNG(X) + CLG(xy) | [ CNG(x) +  CLG(ay) )
CNG(X,) + CLG(An) CNG(X,) + CLG(X,)

‘ CNG(X) + CLG() I I CNG(X) + CLG(X.) ’
CNG(Xy) + CLG(??};})”“”%»; \ “CNG(Xy) + CLG(Xn) J

( CNG(Y,) J [ clo(x) )
ted( T(X,) , T'(A,) ) =
min,, . ed(CNG(X,), CLG(Xp)) + ed(CNG(X}), CLG(X,)) + ed(CNG(X,), CLG(X,)) + D

where D is a constant

18/24
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Goal: For each k-clique X, construct two trees T(X;), T/ (X;) st ted(T(X,), T/ (X)) tells us whether there are k-cliques X}, X C VK s.t.
X3 U Xp U Xc is a 3k-clique.

[ CNG(x) + CLG(xy) | [ oNG(nv) +  CLG(v) )
CNG(X,) + CLG(&,) CNG(X,) + CLG(Xy)
‘ CNG(Xy) + CLG(p) I I CNG(X.) + CLG(X.) ’
| CNG(&w) + CLG(Xw) | | ONG(Xw) + CLG(Xy) |
( o) ) (e )

ted( T(X,), T/(X,)) =
miny, . ed(CNG(X,), CLG(X5)) + ed(CNG(X,), CLG(X,)) + ed(CNG(X.), CLG(X,)) 4+ D
L3C+D
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Simplified Goal |

Simplified Goal: Construct two trees T, T/ s.t. ted(T, T’) tells us whether there are k-cliques X, X C vk st Xp U X is a 2k-clique. J
( CNG() ) ( CLG(X) )
CNG(X,) CLG(X,)
CNG(X,) I I CLG(X,)
T : : T
CNG(Xy) CLG(Xy)
ted( T, T') =

minp.c ed(CNG(X}), CLG(X,)) + D

where D is a constant
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Simplified Goal |

Simplified Goal: Construct two trees T, T/ s.t. ted(T, T’) tells us whether there are k-cliques X, X C vk st Xp U X is a 2k-clique.

-

CNG() ) ( CLG(X)

CNG(X,) CLG(A)

CNG(X3) I I CLG(X.)

CNG () ) | CLG(n)
ted( T, T') =

ming,c ed(CNG(X}), CLG(X.)) + D
LC+D

T/
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Simplified Goal Il

Simplified Goal: Construct two trees T, T/ s.t. ted(T, T') tells us whether there are k-cliques Xy, X C vk st Xp U X is a 2k-clique. J

()91 —+ ()91 —+»
-+ (2)9ND —+ (W)9IND —+»

)91 —---
-+ ()oNd —-

-

= (Mx)91D —-
= (M)oND —--

Put all CLG(X;)/CNG(X;) on a single spine.

20/24



Simplified Goal Il

Simplified Goal: Construct two trees T, T/ s.t. ted(T, T') tells us whether there are k-cliques Xy, X C vk st Xp U X is a 2k-clique. J

== ()91 —+ ()91
+—(2)9ND —+ (W)IND —+»

)91 —+-
'X)IND —+--

ey
—

—+(W)910—+
i ——+(V¥)oND —+---

| I

Append a long enough tail with a special character §.
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Simplified Goal Il

Simplified Goal: Construct two trees T, T/ s.t. ted(T, T') tells us whether there are k-cliques Xy, X C vk st Xp U X is a 2k-clique. J
— !
2 2
iy Q2
1 1
A
2 TR
iy 2
& &
1 1
; —H—
T T
o 2
iy Q
} 1
; —#H
T T
o 2
Q Q
5 &
— N — T —#— T

| |

Append left special character #;, here A ~ 100 - length of CLG/CNG.
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Simplified Goal Il

Simplified Goal: Construct two trees T, T/ s.t. ted(T, T') tells us whether there are k-cliques Xy, X C vk st Xp U X is a 2k-clique. J
—r—t P
& 2
= =
j; — = —— j;

ol 2
2 Q
& &
1 il
Gt el —H—
T T
2 2
Q Q
= &
} 1
[ —#H
T i
o 2
Q Q
5 &
— N T —#— —#— T — N ——

—e
—%

Do the same on the right.
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Proof Sketch IlI

Goal: For each k-clique X, construct two trees T(X,), T/(X5) s.t.

ted(T(X,), T/ (X)) tells us whether there are k-cliques X}, X C VK s.t.
X3 U Xp U Xc is a 3k-clique.

NG+ cLea) nox) 4 e

NG+ cLe)

g pren o+ as
( oG, ] f s ) i) h b T
. (%) ] ‘ ‘ i ) . oNG(¥) + CLe(H) oNG(¥) + CLe(H)
e il ( e ) ( e )
’
ted( T, T) = ted( T(,) , T/(Xa) ) =
miny, ¢ ed(CNG(X}), CLG(Xc)) + D min, ¢ ed(CNG(X,), CLG(X)) + ed(CNG(X}), CLG(Xe)) +

ed(CNG(Xc), CLG(X,)) + D
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Proof Sketch IV

Goal: For each k-clique X, construct two trees T(X;), T/ (X;) st ted(T(X,), T/ (X)) tells us whether there are k-cliques X}, X C VK s.t.
X3 U Xp U Xc is a 3k-clique.
— i i —
2 3
= E
i»—#é%CNG(M)« LG i
2 z
& &
1 1
R ONG(s) LG — A |
T T
o a
2 3
2 a
} }
e ONG(A) FCLGA) = — |
;i ;
o o
a 2
+ ENG(,) +——— N ——— T — #4 —+ CNG(An)+ + CLG(Xy) +— #2 — T e #  CLG(X) 4

5

—

Squeeze in dependence on X,.
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Proof Sketch IV

Goal: For each k-clique X, construct two trees T(X;), T/ (X;) st ted(T(X,), T/ (X)) tells us whether there are k-cliques X}, X C VK s.t.
X3 U Xp U Xc is a 3k-clique.
— i i —
2 3
= E
i»—#é%CNG(M)« LG i
2 z
& &
1 1
R ONG(s) LG — A |
T T
o a
2 3
2 a
} }
e ONG(A) FCLGA) = — |
;i ;
o o
a 2
+ ENG(,) +——— N ——— T — #4 —+ CNG(An)+ + CLG(Xy) +— #2 — T e #  CLG(X) 4

5

—

Size requirement: nktOM)
22/24



Proof Sketch IV

Goal: For each k-clique X, construct two trees T(X;), T/ (X;) st ted(T(X,), T/ (X)) tells us whether there are k-cliques X}, X C VK s.t.
X3 U Xp U Xc is a 3k-clique.
— i i —
2 3
= E
i»—#é%CNG(M)« LG i
2 z
& &
1 1
R ONG(s) LG — A |
T T
o a
2 3
2 a
} }
e ONG(A) FCLGA) = — |
;i ;
o o
a 2
+ ENG(,) +——— N ——— T — #4 —+ CNG(An)+ + CLG(Xy) +— #2 — T e #  CLG(X) 4

5

—

Dependence on X,: n®1) v
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Other Lower Bounds

RNA Folding/Dyck Edit Distance:
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Other Lower Bounds

RNA Folding/Dyck Edit Distance:
We use 4k-Clique Detection;

We again partition in k-cliques;

Each round, we fix one k-clique and check whether there are 3 other k-cliques that together form
4k-clique;

® Somehow easier because static lower bound alreay tells us how to find 3k-clique.

Weighted Tree Edit Distance
® \We use Weighted 4k-Clique;
® Each round, we fix one node and find three nodes that minimize 4-clique where fixed node is in;

® Also somehow easier because static lower bound alreay tells us how to detect minimum weight
3-clique, i.e., triangle.
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Thanks!



