

Hardness of Tree Edit Distance and Friends

Bingbing Hu¹ **Jakob Nogler**² Barna Saha¹

¹UC San Diego

²MIT

(String) Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

(String) Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a character c with c' with cost $\delta(c, c')$

abc~~x~~ef \longrightarrow abc~~y~~ef

(String) Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a character c with c' with cost $\delta(c, c')$

abc~~x~~ef \longrightarrow abc~~y~~ef

2. Delete a character c with cost $\delta(c, \varepsilon)$

abc~~c~~def \longrightarrow abdef

(String) Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a character c with c' with cost $\delta(c, c')$

abc~~x~~ef \longrightarrow abc~~y~~ef

2. Delete a character c with cost $\delta(c, \varepsilon)$

abc~~c~~def \longrightarrow abdef

3. Insert a character c with cost $\delta(\varepsilon, c)$

abcef \longrightarrow abc~~x~~ef

(String) Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a character c with c' with cost $\delta(c, c')$

abc~~x~~ef \longrightarrow abc~~y~~ef

2. Delete a character c with cost $\delta(c, \varepsilon)$

abc~~c~~def \longrightarrow abdef

3. Insert a character c with cost $\delta(\varepsilon, c)$

abcef \longrightarrow abc~~x~~ef

“Unweighted” (String) Edit Distance: all costs are one

(String) Edit Distance Algorithms

References	Time	Remarks
Vin68, NW70, Sel74, WF74	$\mathcal{O}(n^2)$	textbook algorithm
MP80	$\mathcal{O}(n^2 / \log^2 n)$	small alphabets and integer weights only
BF05	$\mathcal{O}(n^2 \log \log n / \log^2 n)$	small integer weights only
BI18	$\Omega(n^{2-o(1)})$	under SETH, already for unweighted

Dynamic (String) Edit Distance

Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their edit distance.

$$\text{ed(port , arts)} = 3$$

Dynamic (String) Edit Distance

Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their edit distance.

$$\text{ed(part , arts)} = 2$$

Dynamic (String) Edit Distance

Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their edit distance.

$$\text{ed(part , art)} = 1$$

Dynamic (String) Edit Distance

Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their edit distance.

$$\text{ed(part , art)} = 1$$

Question: Can we do better than recomputing from scratch?

Dynamic (String) Edit Distance

Strings undergo updates (insertion/deletions and substitutions), and we need to maintain their edit distance.

$$\text{ed(part , art)} = 1$$

Question: Can we do better than recomputing from scratch?

References	Update Time	Remarks
CKM20	$\tilde{\mathcal{O}}(n)$	unweighted
CKM20	$\tilde{\mathcal{O}}(n \cdot \min(\sqrt{n}, W))$	uniform weights, W is maximum weight
GK25	$\tilde{\mathcal{O}}(nW)$	arbitrary weights
CKW23	$\Omega(n^{1.5-o(1)})$	under APSP, large W

**This Paper:
Generalization of (String) Edit Distance
in the Dynamic Setting**

Tree Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

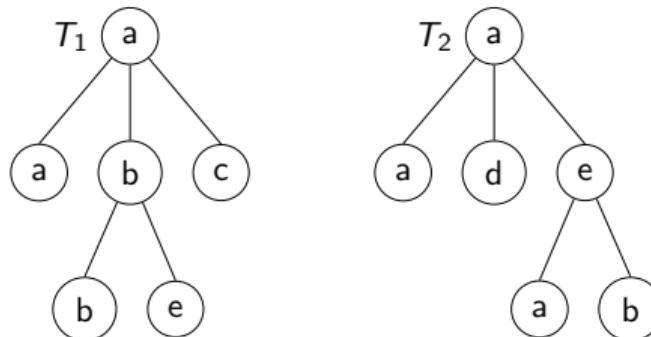
Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

↓ Generalization on Trees

Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1, T_2 and a cost function δ .

Output: Cheapest transformation of T_1 into T_2 using deletion, insertions and substitutions.



Tree Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

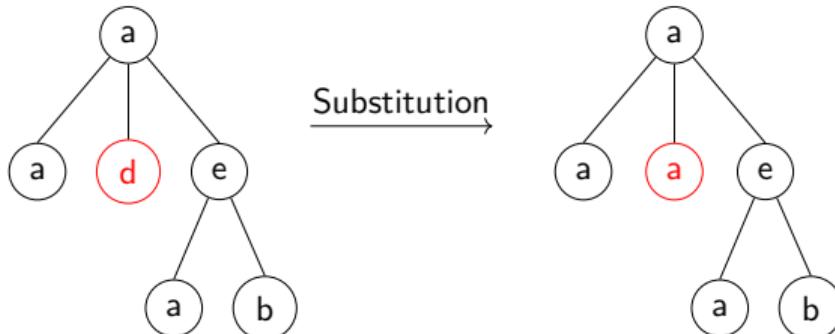
Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

↓ Generalization on Trees

Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1, T_2 and a cost function δ .

Output: Cheapest transformation of T_1 into T_2 using deletion, insertions and substitutions.



Tree Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

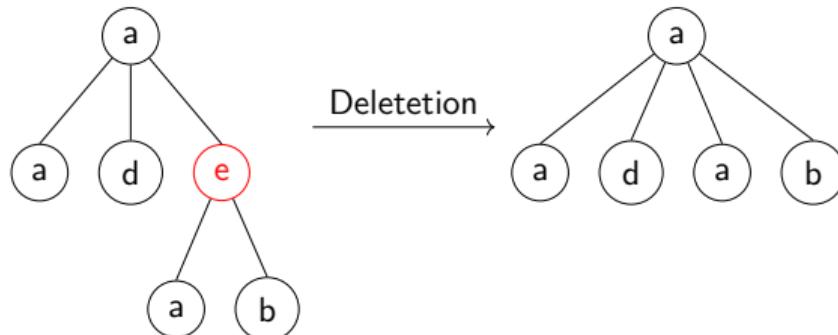
Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

↓ Generalization on Trees

Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1, T_2 and a cost function δ .

Output: Cheapest transformation of T_1 into T_2 using deletion, insertions and substitutions.



Tree Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

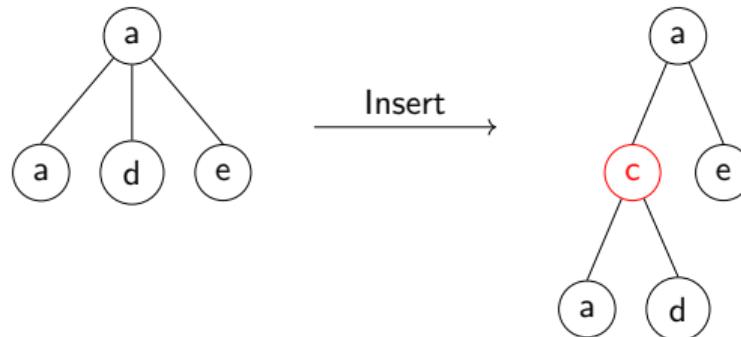
Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

↓ Generalization on Trees

Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1, T_2 and a cost function δ .

Output: Cheapest transformation of T_1 into T_2 using deletion, insertions and substitutions.



Tree Edit Distance (Background)

Background: Introduced by Selkow in the late 1970s. Applications in computational biology, structured data analysis, image processing, compiler optimization, and more.

```
<?xml version="1.0"?>
- <Dataset xmlns="http://www.safe.com">
  - <Building id="Surrey Head Office">
    <Address>"7445 132 St."</Address>
    <City>Surrey</City>
    <Province>BC</Province>
    <Country>Canada</Country>
    - <Location>
      <Longitude>-122.860</Longitude>
      <Latitude>49.138</Latitude>
    </Location>
    <Reference>https://www.google.ca/maps/
      3m1!4b1!4m5!3m4!1s0x5485dbd520cc
      122.8574636?hl=en</Reference>
  - <Room id="Admin_100">
```

Source: www.support.safe.com

Algorithms for Tree Edit Distance

Reference	Complexity	Remarks
Tai79	$\mathcal{O}(n^6)$	weighted
SZ89	$\mathcal{O}(n^4)$	weighted
Klein98	$\mathcal{O}(n^3 \log n)$	weighted
DMRW10	$\mathcal{O}(n^3)$	weighted
BGMW20	no $\mathcal{O}(n^{3-\varepsilon})$ algo under APSP	weighted
NPSVWXY25	$n^3 / 2^{\Omega(\sqrt{\log n})}$	weighted
Mao22	$\mathcal{O}(n^{2.9546})$	unweighted
Dürr23	$\mathcal{O}(n^{2.9148})$	unweighted
NPSVWXY25	$\mathcal{O}(n^{2.687})$	unweighted

Algorithms for Tree Edit Distance

Reference	Complexity	Remarks
Tai79	$\mathcal{O}(n^6)$	weighted
SZ89	$\mathcal{O}(n^4)$	weighted
Klein98	$\mathcal{O}(n^3 \log n)$	weighted
DMRW10	$\mathcal{O}(n^3)$	weighted
BGMW20	no $\mathcal{O}(n^{3-\varepsilon})$ algo under APSP	weighted
NPSVWXY25	$n^3 / 2^{\Omega(\sqrt{\log n})}$	weighted
Mao22	$\mathcal{O}(n^{2.9546})$	unweighted
Dürr23	$\mathcal{O}(n^{2.9148})$	unweighted
NPSVWXY25	$\mathcal{O}(n^{2.687})$	unweighted

Question 1: How about *Dynamic* Tree Edit Distance?

Algorithms for Tree Edit Distance

Reference	Complexity	Remarks
Tai79	$\mathcal{O}(n^6)$	weighted
SZ89	$\mathcal{O}(n^4)$	weighted
Klein98	$\mathcal{O}(n^3 \log n)$	weighted
DMRW10	$\mathcal{O}(n^3)$	weighted
BGMW20	no $\mathcal{O}(n^{3-\varepsilon})$ algo under APSP	weighted
NPSVWXY25	$n^3 / 2^{\Omega(\sqrt{\log n})}$	weighted
Mao22	$\mathcal{O}(n^{2.9546})$	unweighted
Dürr23	$\mathcal{O}(n^{2.9148})$	unweighted
NPSVWXY25	$\mathcal{O}(n^{2.687})$	unweighted

Question 1: How about *Dynamic Tree Edit Distance*?

Question 2: Is Unweighted Edit Distance on trees harder than on strings?

Dyck Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

⇓ About Balanced Sequence of Parenthesis

Dyck Edit Distance Problem

Input: A string S over a set of parenthesis

Output: Closest S' to S w.r.t. edit distance such that S' is balanced

Dyck Edit Distance

(String) Edit Distance Problem

Input: Two strings S_1, S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

⇓ About Balanced Sequence of Parenthesis

Dyck Edit Distance Problem

Input: A string S over a set of parenthesis

Output: Closest S' to S w.r.t. edit distance such that S' is balanced

$$S = ((\{)) \rightarrow S' = (\{\})$$

distance = 3

RNA Folding

RNA Folding

Input: A string S over alphabets $\Sigma \cup \Sigma'$, where each $\sigma \in \Sigma$ has a matching symbol $\sigma' \in \Sigma'$.

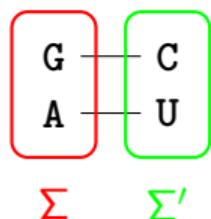
Output: Max. number of intersection-free connections between matching symbols σ, σ' .

RNA Folding

RNA Folding

Input: A string S over alphabets $\Sigma \cup \Sigma'$, where each $\sigma \in \Sigma$ has a matching symbol $\sigma' \in \Sigma'$.

Output: Max. number of intersection-free connections between matching symbols σ, σ' .



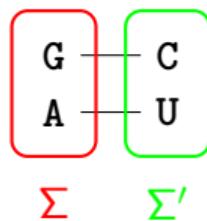
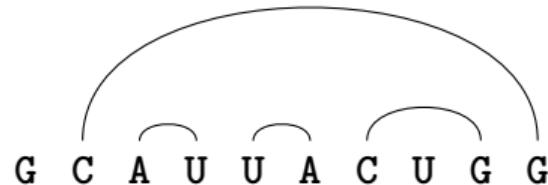
G C A U U A C U G G

RNA Folding

RNA Folding

Input: A string S over alphabets $\Sigma \cup \Sigma'$, where each $\sigma \in \Sigma$ has a matching symbol $\sigma' \in \Sigma'$.

Output: Max. number of intersection-free connections between matching symbols σ, σ' .

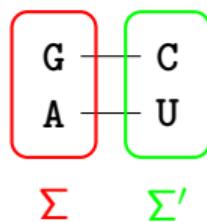
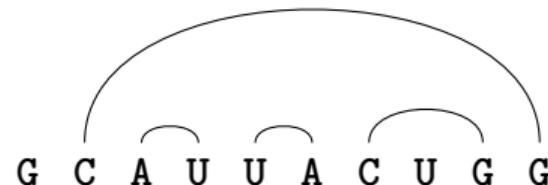


RNA Folding

RNA Folding

Input: A string S over alphabets $\Sigma \cup \Sigma'$, where each $\sigma \in \Sigma$ has a matching symbol $\sigma' \in \Sigma'$.

Output: Max. number of intersection-free connections between matching symbols σ, σ' .



Relation with edit distance: we can embed edit distance in RNA folding.

Algorithms for Dyck Edit Distance and RNA Folding

References	Time	Remarks
AP72, NJ80	$\mathcal{O}(n^3)$	
VGF14	$\mathcal{O}(n^3 / \log n)$	
BGSVW17	$\mathcal{O}(n^{2.8603})$	
CDXW22	$\mathcal{O}(n^{2.687})$	
ABVW18	$\Omega(n^{3-o(1)})$	under k -Clique Detection, combinatorial

Algorithms for Dyck Edit Distance and RNA Folding

References	Time	Remarks
AP72, NJ80	$\mathcal{O}(n^3)$	
VGF14	$\mathcal{O}(n^3 / \log n)$	
BGSVW17	$\mathcal{O}(n^{2.8603})$	
CDXW22	$\mathcal{O}(n^{2.687})$	
ABVW18	$\Omega(n^{3-o(1)})$	under k -Clique Detection, combinatorial

Question 3: How about *Dynamic* Dyck Edit Distance and RNA Folding?

Our Results: Bad News...

Our Results

Question 1: How about *Dynamic Tree Edit Distance*?

Our Results

Question 1: How about *Dynamic Tree Edit Distance*?

Theorem

For any $\varepsilon > 0$, there are no dynamic algorithms:

- for weighted TED with $\mathcal{O}(n^{3-\varepsilon})$ update time, unless Weighted 4-Clique Conj. fails;
- for unweighted TED with $\mathcal{O}(n^{2-\varepsilon})$ (comb.) updated time, unless k -Clique Detection Conj. fails.

Our Results

Question 1: How about *Dynamic Tree Edit Distance*?

Theorem

For any $\varepsilon > 0$, there are no dynamic algorithms:

- for weighted TED with $\mathcal{O}(n^{3-\varepsilon})$ update time, unless Weighted 4-Clique Conj. fails;
- for unweighted TED with $\mathcal{O}(n^{2-\varepsilon})$ (comb.) updated time, unless k -Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?

Dynamic Unweighted Edit Distance \neq Dynamic Unweighted Tree Edit Distance

Our Results

Question 1: How about *Dynamic Tree Edit Distance*?

Theorem

For any $\varepsilon > 0$, there are no dynamic algorithms:

- for weighted TED with $\mathcal{O}(n^{3-\varepsilon})$ update time, unless Weighted 4-Clique Conj. fails;
- for unweighted TED with $\mathcal{O}(n^{2-\varepsilon})$ (comb.) updated time, unless k -Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?

Dynamic Unweighted Edit Distance \neq Dynamic Unweighted Tree Edit Distance

Question 3: How about *Dynamic Dyck Edit Distance and RNA Folding*?

Our Results

Question 1: How about *Dynamic Tree Edit Distance*?

Theorem

For any $\varepsilon > 0$, there are no dynamic algorithms:

- for weighted TED with $\mathcal{O}(n^{3-\varepsilon})$ update time, unless Weighted 4-Clique Conj. fails;
- for unweighted TED with $\mathcal{O}(n^{2-\varepsilon})$ (comb.) updated time, unless k -Clique Detection Conj. fails.

Question 2: Is Unweighted Edit Distance on trees harder than on strings?

Dynamic Unweighted Edit Distance \neq Dynamic Unweighted Tree Edit Distance

Question 3: How about *Dynamic Dyck Edit Distance and RNA Folding*?

Theorem

For any $\varepsilon > 0$, there are no dynamic algorithms for Dyck Edit Distance and RNA Folding with $\mathcal{O}(n^{3-\varepsilon})$ (comb.) updated time, unless k -Clique Detection Conj. fails

The Two Conjectures

k -Clique Detection

Input: A unweighted graph $G = (V, E)$ on n nodes.

Output: YES if there are $v_1, \dots, v_k \in V$ such that v_1, \dots, v_k is a k -clique, and NO otherwise.

The Two Conjectures

k -Clique Detection

Input: A unweighted graph $G = (V, E)$ on n nodes.

Output: YES if there are $v_1, \dots, v_k \in V$ such that v_1, \dots, v_k is a k -clique, and NO otherwise.

k -Clique Detection Conjecture

For any $\varepsilon > 0$, k -Clique Detection cannot be solved in $\mathcal{O}(n^{k-\varepsilon})$ time by any combinatorial algorithm.

The Two Conjectures

k -Clique Detection

Input: A unweighted graph $G = (V, E)$ on n nodes.

Output: YES if there are $v_1, \dots, v_k \in V$ such that v_1, \dots, v_k is a k -clique, and NO otherwise.

k -Clique Detection Conjecture

For any $\varepsilon > 0$, k -Clique Detection cannot be solved in $\mathcal{O}(n^{k-\varepsilon})$ time by any combinatorial algorithm.

Weighted k -Clique

Input: A weighted graph $G = (V, E, w)$.

Output: $\min_{v_1, \dots, v_k \in V} \sum_{i < j} w(v_i, v_j)$ such that v_1, \dots, v_k is a k -clique.

The Two Conjectures

k -Clique Detection

Input: A unweighted graph $G = (V, E)$ on n nodes.

Output: YES if there are $v_1, \dots, v_k \in V$ such that v_1, \dots, v_k is a k -clique, and NO otherwise.

k -Clique Detection Conjecture

For any $\varepsilon > 0$, k -Clique Detection cannot be solved in $\mathcal{O}(n^{k-\varepsilon})$ time by any combinatorial algorithm.

Weighted k -Clique

Input: A weighted graph $G = (V, E, w)$.

Output: $\min_{v_1, \dots, v_k \in V} \sum_{i < j} w(v_i, v_j)$ such that v_1, \dots, v_k is a k -clique.

Weighted k -Clique Conjecture

For any $\varepsilon > 0$, there is $c > 0$ such that for any $k \geq 3$, the Weighted k -Clique with edge weights in $\{1, \dots, n^{ck}\}$ cannot be solved in $\mathcal{O}(n^{k(1-\varepsilon)})$ time.

Prook Sketch:
Lower Bound for Dynamic Unweighted Tree Edit Distance

Proof Sketch

3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

Proof Sketch

3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;

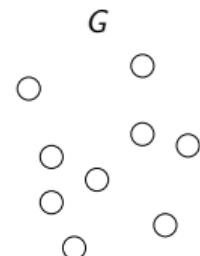
Proof Sketch

3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;



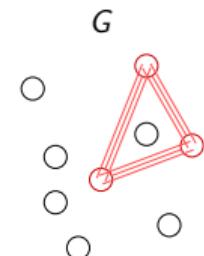
Proof Sketch

3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;



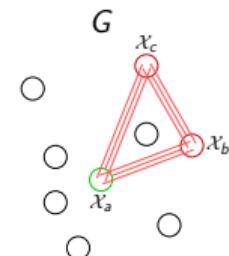
Proof Sketch

3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;
- For each k -clique \mathcal{X}_a , we construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t.
 $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t.
 $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is 3k-clique.



Proof Sketch

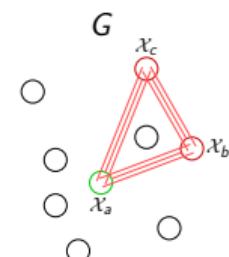
3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;
- For each k -clique \mathcal{X}_a , we construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t.
 $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t.
 $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is 3k-clique.

Size of $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ is $n^{k+\mathcal{O}(1)}$ and dependence on \mathcal{X}_a is $n^{\mathcal{O}(1)}$.



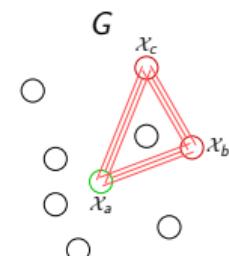
Proof Sketch

3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;
- For each k -clique \mathcal{X}_a , we construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t.
 $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is $3k$ -clique.
Size of $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ is $n^{k+\mathcal{O}(1)}$ and dependence on \mathcal{X}_a is $n^{\mathcal{O}(1)}$.
- Proceed in N rounds. In round i :



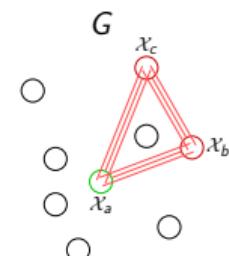
Proof Sketch

3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;
- For each k -clique \mathcal{X}_a , we construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t.
 $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is $3k$ -clique.
 Size of $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ is $n^{k+\mathcal{O}(1)}$ and dependence on \mathcal{X}_a is $n^{\mathcal{O}(1)}$.
- Proceed in N rounds. In round i :
 - Verify whether there are $\mathcal{X}_b, \mathcal{X}_c$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is $3k$ -clique,



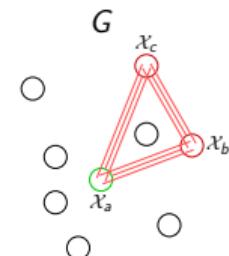
Proof Sketch

3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;
- For each k -clique \mathcal{X}_a , we construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t.
 $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is $3k$ -clique.
Size of $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ is $n^{k+\mathcal{O}(1)}$ and dependence on \mathcal{X}_a is $n^{\mathcal{O}(1)}$.
- Proceed in N rounds. In round i :
 - Verify whether there are $\mathcal{X}_b, \mathcal{X}_c$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is $3k$ -clique,
 - Transform $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ into $\mathbf{T}(\mathcal{X}_{a+1}), \mathbf{T}'(\mathcal{X}_{a+1})$ via $n^{\mathcal{O}(1)}$ updates.



Proof Sketch

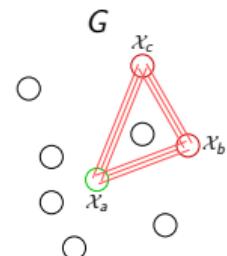
3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;
- For each k -clique \mathcal{X}_a , we construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t.
 $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is 3k-clique.
Size of $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ is $n^{k+\mathcal{O}(1)}$ and dependence on \mathcal{X}_a is $n^{\mathcal{O}(1)}$.
- Proceed in N rounds. In round i :
 - Verify whether there are $\mathcal{X}_b, \mathcal{X}_c$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is 3k-clique,
 - Transform $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ into $\mathbf{T}(\mathcal{X}_{a+1}), \mathbf{T}'(\mathcal{X}_{a+1})$ via $n^{\mathcal{O}(1)}$ updates.

Runtime: $\underbrace{n^k}_{\text{rounds}} \times \underbrace{n^{\mathcal{O}(1)}}_{\text{updates per rounds}} \times \underbrace{(n^{k+\mathcal{O}(1)})^{2-\varepsilon'}}_{\text{time per update}}$



Proof Sketch

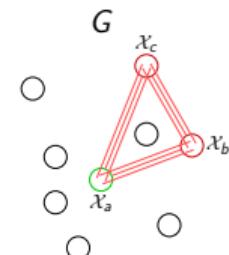
3k-Clique Detection Conjecture

For any $\varepsilon > 0$, 3k-Clique Detection cannot be solved in $\mathcal{O}(n^{3k-\varepsilon})$ time by any combinatorial algorithm.

Steps:

- List all k -cliques $\mathcal{X}_1, \dots, \mathcal{X}_N$ in time $\mathcal{O}(n^k)$;
- For each k -clique \mathcal{X}_a , we construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t.
 $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is 3k-clique.
 Size of $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ is $n^{k+\mathcal{O}(1)}$ and dependence on \mathcal{X}_a is $n^{\mathcal{O}(1)}$.
- Proceed in N rounds. In round i :
 - Verify whether there are $\mathcal{X}_b, \mathcal{X}_c$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is 3k-clique,
 - Transform $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ into $\mathbf{T}(\mathcal{X}_{a+1}), \mathbf{T}'(\mathcal{X}_{a+1})$ via $n^{\mathcal{O}(1)}$ updates.

$$\text{Runtime: } \underbrace{n^k}_{\text{rounds}} \times \underbrace{n^{\mathcal{O}(1)}}_{\text{updates per rounds}} \times \underbrace{(n^{k+\mathcal{O}(1)})^{2-\varepsilon'}}_{\substack{\text{time per update} \\ k \text{ large enough}} \leq} n^{3k-\varepsilon}$$



Clique Gadgets

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.

Core Gadget: Given G , there exist two string embeddings $\text{CLG} : V^k \rightarrow \Sigma^{\lambda_1}$ and $\text{CNG} : V^k \rightarrow \Sigma^{\lambda_2}$ of lengths $\lambda_1, \lambda_2 = n^{O(1)}$ and a constant C such that for any k -cliques $\mathcal{X}, \mathcal{Y} \in V^k$:

$$\begin{aligned} \text{ed}(\text{CLG}(\mathcal{X}), \text{CNG}(\mathcal{Y})) &= C && \text{if } \mathcal{X} \text{ is fully connected with } \mathcal{Y}, \\ \text{ed}(\text{CLG}(\mathcal{X}), \text{CNG}(\mathcal{Y})) &> C && \text{otherwise.} \end{aligned}$$

Clique Gadgets

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.

Core Gadget: Given G , there exist two string embeddings $\text{CLG} : V^k \rightarrow \Sigma^{\lambda_1}$ and $\text{CNG} : V^k \rightarrow \Sigma^{\lambda_2}$ of lengths $\lambda_1, \lambda_2 = n^{O(1)}$ and a constant C such that for any k -cliques $\mathcal{X}, \mathcal{Y} \in V^k$:

$$\begin{aligned} \text{ed}(\text{CLG}(\mathcal{X}), \text{CNG}(\mathcal{Y})) &= C && \text{if } \mathcal{X} \text{ is fully connected with } \mathcal{Y}, \\ \text{ed}(\text{CLG}(\mathcal{X}), \text{CNG}(\mathcal{Y})) &> C && \text{otherwise.} \end{aligned}$$

Remark: Similar gadgets already appear in ABVW17, but for different string similarity notions.

Proof Sketch II

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a)$, $\mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.

$\mathbf{T}(\mathcal{X}_a)$

$$\begin{array}{l} \text{CNG}(\mathcal{X}_1) + \text{CLG}(\mathcal{X}_1) \\ \text{CNG}(\mathcal{X}_2) + \text{CLG}(\mathcal{X}_2) \\ \vdots \\ \text{CNG}(\mathcal{X}_b) + \text{CLG}(\mathcal{X}_b) \\ \vdots \\ \text{CNG}(\mathcal{X}_N) + \text{CLG}(\mathcal{X}_N) \end{array}$$

$$\text{CNG}(\mathcal{X}_a)$$

$\mathbf{T}'(\mathcal{X}_a)$

$$\begin{array}{l} \text{CNG}(\mathcal{X}_1) + \text{CLG}(\mathcal{X}_1) \\ \text{CNG}(\mathcal{X}_2) + \text{CLG}(\mathcal{X}_2) \\ \vdots \\ \text{CNG}(\mathcal{X}_c) + \text{CLG}(\mathcal{X}_c) \\ \vdots \\ \text{CNG}(\mathcal{X}_N) + \text{CLG}(\mathcal{X}_N) \end{array}$$

$$\text{CLG}(\mathcal{X}_a)$$

Proof Sketch II

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a)$, $\mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.

$\mathbf{T}(\mathcal{X}_a)$

$$\text{CNG}(\mathcal{X}_1) + \text{CLG}(\mathcal{X}_1)$$

$$\text{CNG}(\mathcal{X}_2) + \text{CLG}(\mathcal{X}_2)$$

\vdots

$$\text{CNG}(\mathcal{X}_b) + \text{CLG}(\mathcal{X}_b)$$

\vdots

$$\text{CNG}(\mathcal{X}_N) + \text{CLG}(\mathcal{X}_N)$$

$$\text{CNG}(\mathcal{X}_a)$$

$\mathbf{T}'(\mathcal{X}_a)$

$$\text{CNG}(\mathcal{X}_1) + \text{CLG}(\mathcal{X}_1)$$

$$\text{CNG}(\mathcal{X}_2) + \text{CLG}(\mathcal{X}_2)$$

\vdots

$$\text{CNG}(\mathcal{X}_c) + \text{CLG}(\mathcal{X}_c)$$

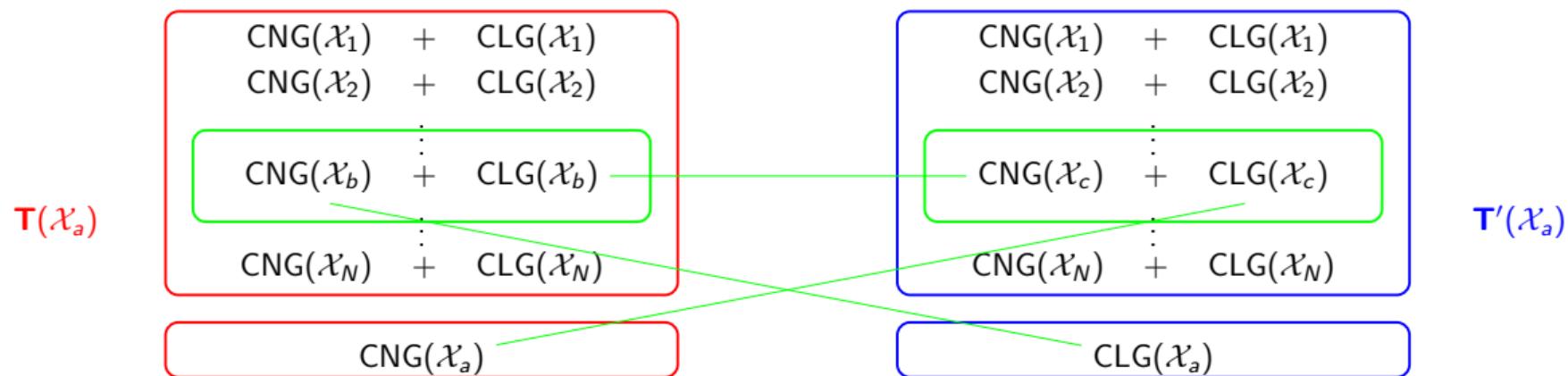
\vdots

$$\text{CNG}(\mathcal{X}_N) + \text{CLG}(\mathcal{X}_N)$$

$$\text{CLG}(\mathcal{X}_a)$$

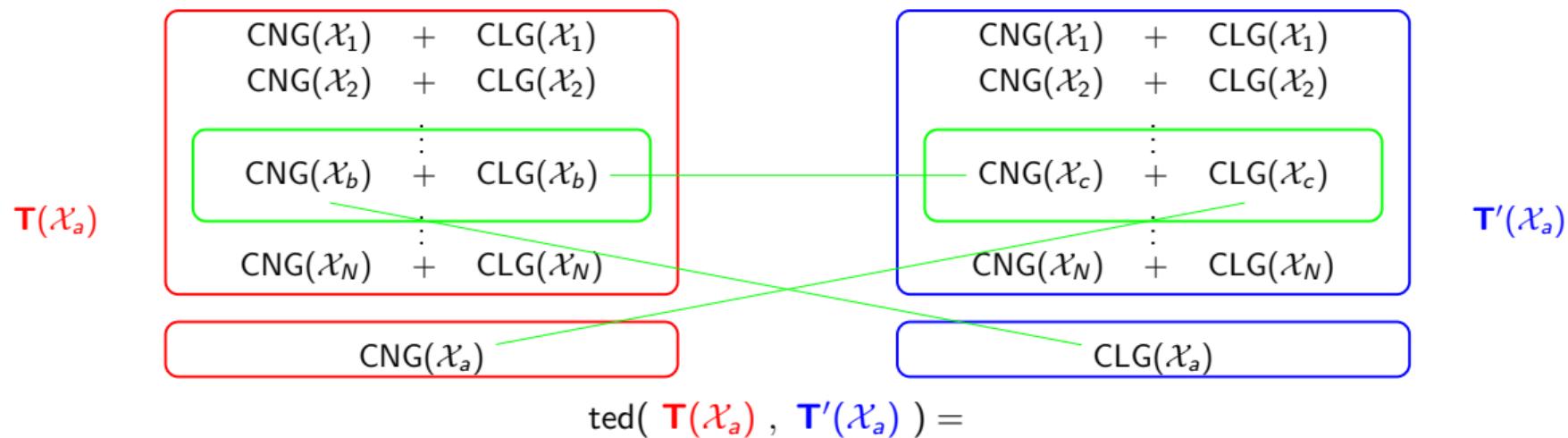
Proof Sketch II

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a)$, $\mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.



Proof Sketch II

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a)$, $\mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.

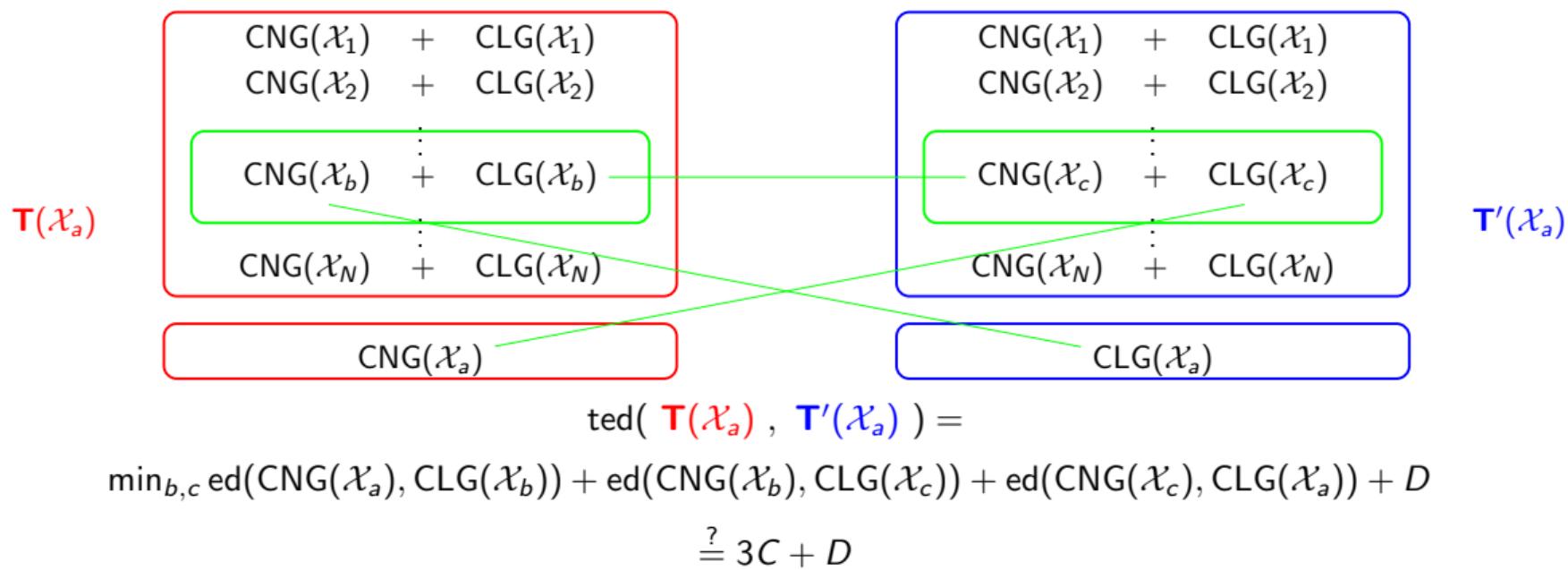


$$\min_{b,c} \text{ed}(\text{CNG}(\mathcal{X}_a), \text{CLG}(\mathcal{X}_b)) + \text{ed}(\text{CNG}(\mathcal{X}_b), \text{CLG}(\mathcal{X}_c)) + \text{ed}(\text{CNG}(\mathcal{X}_c), \text{CLG}(\mathcal{X}_a)) + D$$

where D is a constant

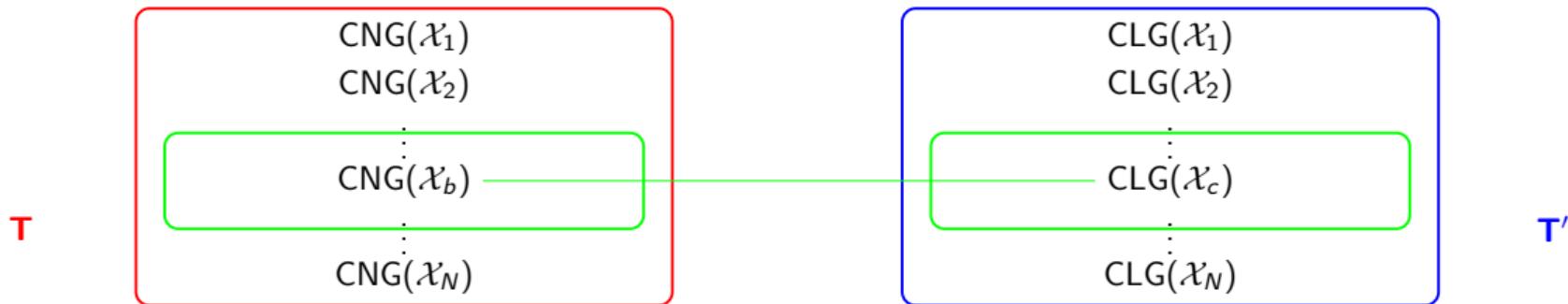
Proof Sketch II

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.



Simplified Goal I

Simplified Goal: Construct two trees \mathbf{T}, \mathbf{T}' s.t. $\text{ted}(\mathbf{T}, \mathbf{T}')$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_b \cup \mathcal{X}_c$ is a $2k$ -clique.

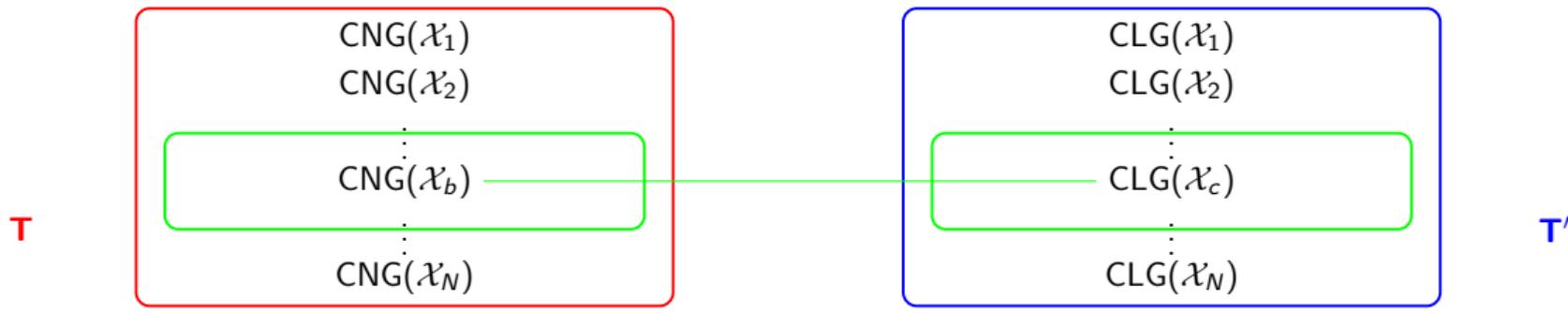


$$\begin{aligned}\text{ted}(\mathbf{T}, \mathbf{T}') &= \\ \min_{b,c} \text{ed}(\text{CNG}(\mathcal{X}_b), \text{CLG}(\mathcal{X}_c)) + D\end{aligned}$$

where D is a constant

Simplified Goal I

Simplified Goal: Construct two trees \mathbf{T}, \mathbf{T}' s.t. $\text{ted}(\mathbf{T}, \mathbf{T}')$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_b \cup \mathcal{X}_c$ is a $2k$ -clique.



$$\begin{aligned}\text{ted}(\mathbf{T}, \mathbf{T}') &= \\ \min_{b,c} \text{ed}(\text{CNG}(\mathcal{X}_b), \text{CLG}(\mathcal{X}_c)) + D & \\ &\stackrel{?}{=} C + D\end{aligned}$$

Simplified Goal II

Simplified Goal: Construct two trees \mathbf{T}, \mathbf{T}' s.t. $\text{ted}(\mathbf{T}, \mathbf{T}')$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_b \cup \mathcal{X}_c$ is a $2k$ -clique.

$\leftarrow \text{CLG}(\mathcal{X}_1) \rightarrow \text{CLG}(\mathcal{X}_2) \rightarrow \dots \rightarrow \text{CLG}(\mathcal{X}_i) \rightarrow \dots \rightarrow \text{CLG}(\mathcal{X}_n) \rightarrow$

$\leftarrow \text{CNG}(\mathcal{X}_1) \rightarrow \text{CNG}(\mathcal{X}_2) \rightarrow \dots \rightarrow \text{CNG}(\mathcal{X}_i) \rightarrow \dots \rightarrow \text{CNG}(\mathcal{X}_n) \rightarrow$

Put all $\text{CLG}(\mathcal{X}_i)/\text{CNG}(\mathcal{X}_i)$ on a single spine.

Simplified Goal II

Simplified Goal: Construct two trees \mathbf{T}, \mathbf{T}' s.t. $\text{ted}(\mathbf{T}, \mathbf{T}')$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_b \cup \mathcal{X}_c$ is a $2k$ -clique.

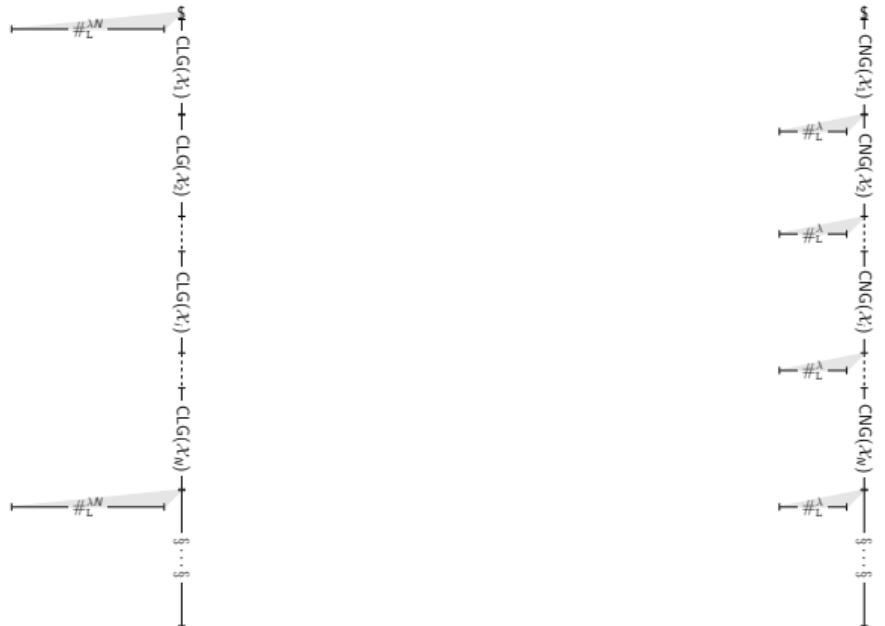
$\text{CLG}(\mathcal{X}_1) \rightarrow \text{CLG}(\mathcal{X}_2) \rightarrow \dots \rightarrow \text{CLG}(\mathcal{X}_i) \rightarrow \dots \rightarrow \text{CLG}(\mathcal{X}_n) \rightarrow \dots \rightarrow \text{CLG}(\mathcal{X}_0) \rightarrow \dots \rightarrow \text{CLG}(\mathcal{X}_k)$

$\text{CNG}(\mathcal{X}_1) \rightarrow \text{CNG}(\mathcal{X}_2) \rightarrow \dots \rightarrow \text{CNG}(\mathcal{X}_i) \rightarrow \dots \rightarrow \text{CNG}(\mathcal{X}_n) \rightarrow \dots \rightarrow \text{CNG}(\mathcal{X}_0) \rightarrow \dots \rightarrow \text{CNG}(\mathcal{X}_k)$

Append a long enough tail with a special character \S .

Simplified Goal II

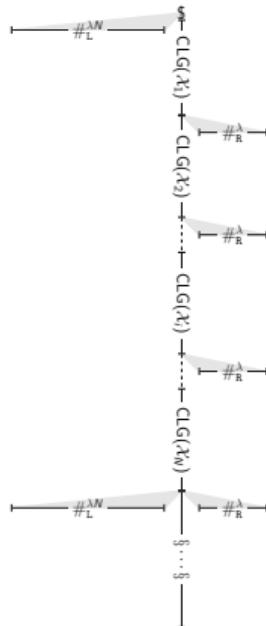
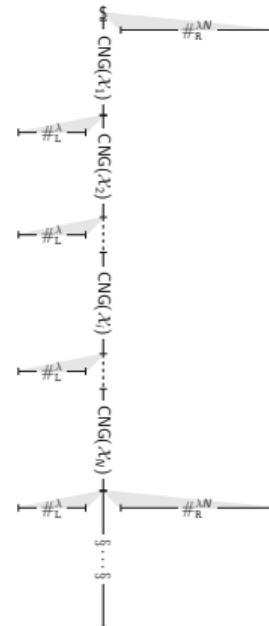
Simplified Goal: Construct two trees \mathbf{T}, \mathbf{T}' s.t. $\text{ted}(\mathbf{T}, \mathbf{T}')$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_b \cup \mathcal{X}_c$ is a $2k$ -clique.



Append left special character $\#_L$, here $\lambda \approx 100 \cdot \text{length of CLG/CNG}$.

Simplified Goal II

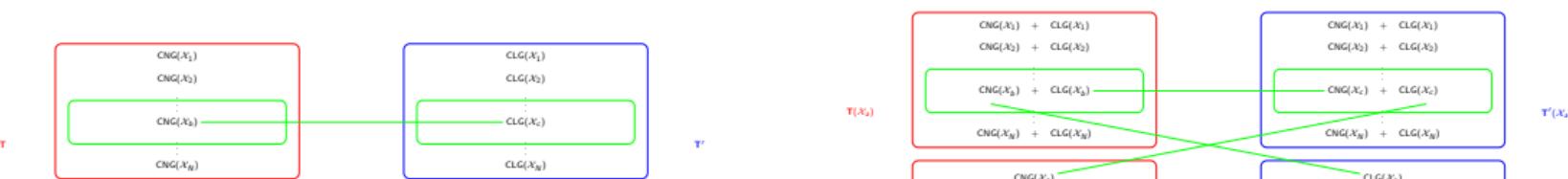
Simplified Goal: Construct two trees \mathbf{T}, \mathbf{T}' s.t. $\text{ted}(\mathbf{T}, \mathbf{T}')$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_b \cup \mathcal{X}_c$ is a $2k$ -clique.



Do the same on the right.

Proof Sketch III

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a)$, $\mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.



$\text{ted}(\mathbf{T}, \mathbf{T}') =$

$$\min_{b,c} \text{ed}(\text{CNG}(\mathcal{X}_b), \text{CLG}(\mathcal{X}_c)) + D$$

$\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)) =$

$$\min_{b,c} \text{ed}(\text{CNG}(\mathcal{X}_a), \text{CLG}(\mathcal{X}_b)) + \text{ed}(\text{CNG}(\mathcal{X}_b), \text{CLG}(\mathcal{X}_c)) + \text{ed}(\text{CNG}(\mathcal{X}_c), \text{CLG}(\mathcal{X}_a)) + D$$

Proof Sketch IV

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.

Squeeze in dependence on \mathcal{X}_a .

Proof Sketch IV

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.

Size requirement: $n^{k+\mathcal{O}(1)}$. ✓

Proof Sketch IV

Goal: For each k -clique \mathcal{X}_a , construct two trees $\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a)$ s.t. $\text{ted}(\mathbf{T}(\mathcal{X}_a), \mathbf{T}'(\mathcal{X}_a))$ tells us whether there are k -cliques $\mathcal{X}_b, \mathcal{X}_c \subseteq V^k$ s.t. $\mathcal{X}_a \cup \mathcal{X}_b \cup \mathcal{X}_c$ is a $3k$ -clique.

Dependence on \mathcal{X}_a : $n^{\mathcal{O}(1)}$. ✓

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

- We use $4k$ -Clique Detection;

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

- We use $4k$ -Clique Detection;
- We again partition in k -cliques;

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

- We use $4k$ -Clique Detection;
- We again partition in k -cliques;
- Each round, we fix one k -clique and check whether there are 3 other k -cliques that together form $4k$ -clique;

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

- We use $4k$ -Clique Detection;
- We again partition in k -cliques;
- Each round, we fix one k -clique and check whether there are 3 other k -cliques that together form $4k$ -clique;
- Somehow easier because static lower bound already tells us how to find $3k$ -clique.

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

- We use $4k$ -Clique Detection;
- We again partition in k -cliques;
- Each round, we fix one k -clique and check whether there are 3 other k -cliques that together form $4k$ -clique;
- Somehow easier because static lower bound already tells us how to find $3k$ -clique.

Weighted Tree Edit Distance

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

- We use $4k$ -Clique Detection;
- We again partition in k -cliques;
- Each round, we fix one k -clique and check whether there are 3 other k -cliques that together form $4k$ -clique;
- Somehow easier because static lower bound already tells us how to find $3k$ -clique.

Weighted Tree Edit Distance

- We use Weighted $4k$ -Clique;

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

- We use $4k$ -Clique Detection;
- We again partition in k -cliques;
- Each round, we fix one k -clique and check whether there are 3 other k -cliques that together form $4k$ -clique;
- Somehow easier because static lower bound already tells us how to find $3k$ -clique.

Weighted Tree Edit Distance

- We use Weighted $4k$ -Clique;
- Each round, we fix one node and find three nodes that minimize 4-clique where fixed node is in;

Other Lower Bounds

RNA Folding/Dyck Edit Distance:

- We use $4k$ -Clique Detection;
- We again partition in k -cliques;
- Each round, we fix one k -clique and check whether there are 3 other k -cliques that together form $4k$ -clique;
- Somehow easier because static lower bound already tells us how to find $3k$ -clique.

Weighted Tree Edit Distance

- We use Weighted $4k$ -Clique;
- Each round, we fix one node and find three nodes that minimize 4-clique where fixed node is in;
- Also somehow easier because static lower bound already tells us how to detect minimum weight 3-clique, i.e., triangle.

Thanks!