
On the Communcation Complexity of Approximate Pattern Matching
Tomasz Kociumaka1, Jakob Nogler2, and PhilipWellnitz3

1Max Planck Institute for Informatics, SIC, Germany 2ETH Zurich, Switzerland 3National Institute of Informatics, SOKENDAI, Japan

Pattern Matching (PM)

Given a text T and a pattern P of length |T | = n and |P | = m, find all substrings
of T where P occurs exactly (exact PM) or with few errors (approximate PM).

a b a a b a b a b a b b b a b b a a a b b b a b b a a

a b a b a b b b a b b a a

a b a b a b b b a b b a aa b a b a b b b a b b a a

PM with edits: compute

OccE
k (P, T) := {x | ∃y ED(T [x . . y), P) ≤ k}.

PM with mismatches: compute

OccH
k (P, T) := {x | HD(T [x . . x + m), P) ≤ k}.

Interesting case: n ≤ 3/2 · m.

Exact PM: compute

Occ(P, T) := {x | T [x . . x + m) = P}.

Communication Complexity

Alice Bob
One-way protocol

1 Alice receives a

PM instance.

Text T , Pattern P ,
Threshold k

2 Alice

compresses the

input.

3 Alice sends

compressed data to

Bob.

4 Bob needs to

reconstructs the

output of the

instance.

Set OccE
k (P, T)

Communication Complexity = “minimum # of machine words to send to Bob”

UB LB Refererence

Exact PM O(1) Ω(1) Periodicity Lemma, [FW65]

PM with mismatches O(k) Ω(k) [CKP19]

PM with edits O(k3) [CKW20]

PM with edits O(k log m) Ω(k) This Work

How to Achieve O(k log m) for PMwith Mismatches

How does Alice encode Occ
H
k (P, T)?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

b e b e b e b e b e b e b e b a b c b a b c b a b a b a b aT

P

P

P

b e b e b e b e b e b e b e b c b a b a b a b a
b e b e b e b e b e b e b e b c b a b a b a b a

b e b e b e b e b e b e b e b c b a b a b a b a

k = 3
S = {0, 2, 6}

Alice sends S, {(15, c, a), (17, a, c), (21, a, c)}, {(13, e, a), (19, a, c)}, and {(9, e, a), (11, e, c)}.

1. Crops T s.t. {0, n − m} ⊆ OccH
k (P, T).

2. Selects set {0, n − m} ⊆ S ⊆ OccH
k (P, T) s.t. gcd(S) = gcd(OccH

k (P, T)) =: g.
3. Sends S and the mismatch information for every i ∈ S to Bob, i.e.,

{(j, P [j], T [i + j]) | P [j] 6= T [i + j]}.

Claim: Alice can choose S s.t. |S| = O(log m).

How does Bob decode Alice’s message?

1. Bob constructs the graph GS.

a c cT

P e e e c a a a Red edges correspond

to mismatches.

V = characters of P & T

E = {{P [j], T [i + j]} | i ∈ S, j ∈ [0 . . m)}

2. Bob divides GS into black and red connected components.
a c c

e e e c a a a

Red component (at least one red edge). Back component (no red edges).

Claim: For every remainder c ∈ [0 . . g) modulo g there is a connected
components consisting of all vertices P [i] and T [i] with i ≡g c.

3. Bob propagates characters in red connected components, and replaces

characters in black connected components with a sentinel character #.
e e e e e e e a c a c a a a a

e e e e e e e c a a a a

#

#

4. Bob thereby obtains T # and P #.

e # e # e # e # e # e # e # a # c # a # c # a # a # a # aT

P # # e # e # e # e # e # e # e # c # a # a # a # a

5. Bob returns OccH
k (P #, T #).

Claim: OccH
k (P #, T #) = OccH

k (P, T).

Extending the Techinques to PMwith Edits

We store a set S of O(log m) k-edits occurences (including a prefix and a suffix),
along with the information for their edits. We use them to construct a graph GS.

T

P

P

a b b b a a a b b b a a b b b

a b a b b a a a b b

a b a b b a a a b b
b a b bT

P b a a
GS

What changes?

b a b bT

P b a a

Remove all characters in

red components from P, T . a b a a b a a bT|S

P|S a b a a b

Red connected components do not have

a periodic structure anymore.

Black connected components have a

periodic structure in P|S and T|S.

Claim: P|S, T|S are periodic with period bc(GS) (# number of black compo-
nents). Moreover, for every remainder c ∈ [0 . . bc(GS)), there is a con-
nected components consisting of all vertices P [i] and T [i] with i ≡bc(GS) c.

How do we keep S small? We add alignments iteratively to S. For each added
alignment we aim to at least halve the period of P|S and T|S.

For which new alignments added to S does the period of P|S and T|S decrease?

P|S

P π0 π1 π2

T|S

T τ0 τ1 τ2 τ3 τ4 τ5

For a new k-edit alignment P T [t . . t′) we consider ∆ = mini |τi − t − π0|.
1 Case ∆ large

P

t t′

π0 π1 π2

T

∆
τ0 τ1 τ2 τ3 τ4 τ5

Then, any node in a black components is far away from any another node in the

same component. If the alignment is added to S, every black component (if it not
becomes red) is merged with another one

2 Case ∆ small

P
period cover

T

∆

Then, we learn a set of character contained in black components around characters

in red components (period cover). Characters outside from the period cover always

match with characters belonging to the same black component.

Why does this work? New results linking “close alignments” and compressibility

(see for example [CKW23], [GJKT24], [GK24]).

Application: PMwith Edits in the Quantum Setting

There is a quantum algorithm that, given a PM with edits instance:

computes OccE
k (P, T) using Ô(n/m ·

√
km) queries and

Ô(n/m · (
√

km + k3.5)) time;
decides whether OccE

k (P, T) 6= ∅ using Ô(
√

n/m ·
√

km) queries and
Ô(

√
n/m · (

√
km + k3.5)) time.

The number of queries is optimal for small k (up to a subpolynomial factor).

Main ingredients of the algorithm:

Structural insights for approximate pattern matching [CKW20].

Quantum algorithm for computing bounded edit distance [GJKT24].

Quantum Gap Edit Distance algorithm (adapted from [GKKS22]).

Where do we use the previous results?

Suppose that we have a set OccE
k (P, T) ⊆ H ⊆ [0 . . n) of candidate positions. We

can retrieve OccE
k (P, T) by only testing O(log n) of the positions in H :

1 Keep a set of K-edit alignments forK > k (but not too large).

2 Discard positions in H “covered” by S. For the others run a (k, K)-Gap Edit
Distance oracle (faster than computing the edit distance).

3 If there is one with dist. ≤ K , retrieve the edits and repeat 2 until H = ∅.

HALG 2024 — June 3–5, 2024 —Warsaw, Poland https://arxiv.org/abs/2403.18812 STOC 2024 — June 24–28, 2024 — Vancouver, Canada

https://arxiv.org/abs/2403.18812

