On the Communcation Complexity of Approximate Pattern Matching

Tomasz Kociumaka¹, Jakob Nogler², and Philip Wellnitz³

¹Max Planck Institute for Informatics, SIC, Germany ²ETH Zurich, Switzerland ³National Institute of Informatics, SOKENDAI, Japan

Pattern Matching (PM)

Given a text T and a pattern P of length |T| = n and |P| = m, find all substrings of T where P occurs exactly (exact PM) or with few errors (approximate PM).

Extending the Techinques to PM with Edits

We store a set S of $\mathcal{O}(\log m)$ k-edits occurrences (including a prefix and a suffix), along with the information for their edits. We use them to construct a graph \mathbf{G}_S .

```
P
a b a b b a a a b b

T
a b b b a a a b b b a a b b b

T
a b b b a a a b b b a a b b b

P
a b a b b a a a b b
```

What changes?

 $\bullet \bullet b \bullet \bullet \bullet a b \bullet \bullet \bullet b \bullet \bullet$

 \mathbf{G}_S

1 Alice receives a
PM instance.2 Alice3 Alice sends4 Bob needs to
reconstructs the
output of the
instance.Text T, Pattern P,
Threshold kinput.Bob.output of the
instance.

Communication Complexity = "minimum # of machine words to send to Bob"

	UB	LB	Refererence
Exact PM	$\mathcal{O}(1)$	$\Omega(1)$	Periodicity Lemma, [FW65]
PM with mismatches	$\mathcal{O}(k)$	$\Omega(k)$	[CKP19]
PM with edits	${\cal O}(k^3)$		[CKW20]
PM with edits	$\mathcal{O}(k\log m)$	$\Omega(k)$	This Work

How to Achieve $\mathcal{O}(k \log m)$ for PM with Mismatches

P bebebebebebeb<mark>e</mark>bcbab<mark>a</mark>baba

Red connected components do not have Black connected components have a periodic structure anymore. Black connected components have a periodic structure in $P_{|S}$ and $T_{|S}$.

Claim: $P_{|S}$, $T_{|S}$ are periodic with period $bc(\mathbf{G}_S)$ (# number of black components). Moreover, for every remainder $c \in [0 \cdot bc(\mathbf{G}_S))$, there is a connected components consisting of all vertices P[i] and T[i] with $i \equiv_{bc(\mathbf{G}_S)} c$.

How do we keep S small? We add alignments iteratively to S. For each added alignment we aim to at least halve the period of $P_{|S}$ and $T_{|S}$.

For which new alignments added to S does the period of $P_{|S}$ and $T_{|S}$ decrease?

For a new k-edit alignment $P \rightsquigarrow T[t \cdot t']$ we consider $\Delta = \min_i |\tau_i - t - \pi_0|$.

Then, any node in a black components is far away from any another node in the

P bebebebeb<mark>e</mark>bebebcbabababa

Alice sends S, {(15, c, a), (17, a, c), (21, a, c)}, {(13, e, a), (19, a, c)}, and {(9, e, a), (11, e, c)}.

1. Crops T s.t. $\{0, n - m\} \subseteq Occ_k^H(P, T)$. 2. Selects set $\{0, n - m\} \subseteq S \subseteq Occ_k^H(P, T)$ s.t. $gcd(S) = gcd(Occ_k^H(P, T)) =: g$. 3. Sends S and the mismatch information for every $i \in S$ to Bob, i.e.,

 $\{(j, P[j], T[i+j]) \mid P[j] \neq T[i+j]\}.$

Claim: Alice can choose S s.t. $|S| = O(\log m)$.

How does Bob decode Alice's message?

1. Bob constructs the graph \mathbf{G}_S .

V = characters of P & T $E = \{ \{ P[j], T[i+j] \} \mid i \in S, j \in [0...m] \}$

k = 3

 $S = \{0, 2, 6\}$

2. Bob divides \mathbf{G}_S into black and red connected components.

Red component (at least one red edge).

Back component (no red edges).

Claim: For every remainder $c \in [0 \dots g]$ modulo g there is a connected components consisting of all vertices P[i] and T[i] with $i \equiv_g c$.

same component. If the alignment is added to S, every black component (if it not becomes red) is merged with another one

2 Case Δ small Δ

Then, we learn a set of character contained in black components around characters in red components (*period cover*). Characters outside from the period cover always match with characters belonging to the same black component.

Why does this work? New results linking "close alignments" and compressibility (see for example [CKW23], [GJKT24], [GK24]).

Application: PM with Edits in the Quantum Setting

There is a quantum algorithm that, given a PM with edits instance:

- computes $\operatorname{Occ}_k^E(P,T)$ using $\widehat{\mathcal{O}}(n/m \cdot \sqrt{km})$ queries and $\widehat{\mathcal{O}}(n/m \cdot (\sqrt{km} + k^{3.5}))$ time;
- decides whether $\operatorname{Occ}_{k}^{E}(P,T) \neq \emptyset$ using $\widehat{\mathcal{O}}(\sqrt{n/m} \cdot \sqrt{km})$ queries and $\widehat{\mathcal{O}}(\sqrt{n/m} \cdot (\sqrt{km} + k^{3.5}))$ time.

The number of queries is optimal for small k (up to a subpolynomial factor).

3. Bob propagates characters in red connected components, and replaces characters in black connected components with a sentinel character **#**.

4. Bob thereby obtains $T^{\#}$ and $P^{\#}$.

 $T^{\#}$ #e#e#e#e#e#e#e#a#c#a#c#a#a#a#a#a $P^{\#}$ #e#e#e#e#e#e#e#c#a#a#a#a

5. Bob returns $\operatorname{Occ}_k^H(P^\#, T^\#)$.

Claim: $Occ_k^H(P^{\#}, T^{\#}) = Occ_k^H(P, T).$

Main ingredients of the algorithm:

• Structural insights for approximate pattern matching [CKW20].

- Quantum algorithm for computing bounded edit distance [GJKT24].
- Quantum Gap Edit Distance algorithm (adapted from [GKKS22]).

Where do we use the previous results?

Suppose that we have a set $Occ_k^E(P,T) \subseteq H \subseteq [0 \dots n]$ of candidate positions. We can retrieve $Occ_k^E(P,T)$ by only testing $\mathcal{O}(\log n)$ of the positions in H:

1 Keep a set of K-edit alignments for K > k (but not too large).

- 2 Discard positions in H "covered" by S. For the others run a (k, K)-Gap Edit Distance oracle (faster than computing the edit distance).
- (3) If there is one with dist. $\leq K$, retrieve the edits and repeat (2) until $H = \emptyset$.

HALG 2024 — June 3–5, 2024 — Warsaw, Poland

https://arxiv.org/abs/2403.18812

STOC 2024 — June 24–28, 2024 — Vancouver, Canada